4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 6Citation - Scopus: 6Side Chain Effect on the Electrochemical and Optical Properties of Thieno[3,4-c]pyrrole-4,6-dione Based Donor-Acceptor Donor Type Monomers and Polymers(Royal Soc Chemistry, 2023) Cakal, Deniz; Arabaci, Elif Demir; Yildirim, Erol; Cihaner, Atilla; Onal, Ahmet M.In organic pi-conjugated materials, side chains play great roles that impact far beyond solubility. In this work, we mainly focused on the synthesis of new donor-acceptor-donor (D-A-D) type conjugated monomers and their corresponding polymers appending thieno[3,4-c]pyrrole-4,6-dione (TPD) acceptor with a new side chain, fluorene (Fl), to investigate the side chain effect. In this context, to reveal the precise effect of the side chains on the optical and electrochemical properties of the monomers and polymers synthesized in this work, four series of D-A-D monomers, each containing a TPD core unit with a different side chain, are compared and discussed in relation to each other. Notably, it was discovered that the TPD acceptor unit can be modified with any functional group other than common alkyl chains to impart new functionalities by maintaining their superior optoelectronic properties. New types of side chains can be used to tune the physical characteristics, such as solubility, absorption, emission, and molecular packing. In this work, Fl-appended monomers as a new class of D-A-D type pi-conjugated molecules containing 3,4-ethylenedioxythiophene (EDOT (E)) and 3,4-propylenedioxythiophene (ProDOT (P)) donor units were studied and it was found that 1,3-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-5-(9H-fluoren-2-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (E(Fl)) and 1,3-bis(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-5-(9H-fluoren-2-yl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione (P(Fl)) exhibited reasonable quantum yields and their corresponding polymers revealed ambipolar character with slightly lower band gap as compared to the previous analogues containing other side chains. Observed experimental results were elucidated by first principle calculations. In this paper, we discussed that using side chain engineering is an effective strategy for improving next-generation organic pi-conjugated materials with the desired properties.Article Citation - WoS: 9Citation - Scopus: 10Chromium Based Metal-Organic Framework Mil-101 Decorated Palladium Nanoparticles for the Methanolysis of Ammonia-Borane(Royal Soc Chemistry, 2020) Caner, Nurdan; Yurderi, Mehmet; Bulut, Ahmet; Kanberoglu, Gulsah Saydan; Kaya, Murat; Zahmakiran, MehmetPalladium nanoparticles stabilized by an MIL-101 metal-organic framework (Pd@MIL-101) are synthesized by a novel synthesis approach. A Pd@MIL-101 catalyst facilitates H(2)generation from the methanolysis of ammonia-borane with record catalytic activity (TOF = 1080 min(-1)) at room temperature. Moreover, the exceptional stability of Pd@MIL-101 makes it a reusable heterogeneous catalyst in this catalytic transformation.Article Citation - WoS: 29Amine-Functionalized Graphene Nanosheet-Supported Pdauni Alloy Nanoparticles: Efficient Nanocatalyst for Formic Acid Dehydrogenation(Royal Soc Chemistry, 2018) Bulut, Ahmet; Yurderi, Mehmet; Kaya, Murat; Aydemir, Murat; Baysal, Akin; Durap, Feyyaz; Zahmakiran, MehmetFormic acid (HCOOH), a major by-product of biomass processing with high energy density, stability and non-toxicity, has a great potential as a safe and a convenient liquid hydrogen (H-2) storage material for combustion engines and fuel cell applications. However, high-purity hydrogen release from the catalytic decomposition of aqueous formic acid solution at desirable rates under mild conditions stands as a major challenge that needs to be solved for the practical use of formic acid in on-demand hydrogen generation systems. Described herein is a new nanocatalyst system comprised of 3-aminopropyltriethoxysilane-functionalized graphene nanosheet-supported PdAuNi alloy nanoparticles (PdAuNi/f-GNS), which can reproducibly be prepared by following double solvent method combined with liquid-phase chemical reduction, all at room temperature. PdAuNi/f-GNS selectively catalyzes the decomposition of aqueous formic acid through the dehydrogenation pathway (similar to 100% H-2 selectivity), in the absence of any promoting additives (alkali formates, Bronsted bases, Lewis bases, etc.). PdAuNi/f-GNS nanocatalyst provides CO-free H-2 generation with a turnover frequency of 1090 mol H-2 mol metal(-1) h(-1) in the additive-free dehydrogenation of formic acid at almost complete conversion (>= 92%) even at room temperature. The catalytic activity provided by PdAuNi/f-GNS nanocatalyst is higher than those obtained with the heterogeneous catalysts reported to date for the additive-free dehydrogenation of formic acid. Moreover, PdAuNi/f-GNS nanoparticles show high durability against sintering, clumping and leaching throughout the catalytic runs, so that the PdAuNi/f-GNS nanocatalyst retains almost its inherent catalytic activity and selectivity at the end of the 10th recycle.Article Citation - WoS: 30Citation - Scopus: 29Interaction of a Novel Platinum Drug With Bovine Serum Albumin: Ftir and Uv-Vis Spectroscopy Analysis(Royal Soc Chemistry, 2015) Korkmaz, Filiz; Erdogan, Deniz Altunoz; Ozalp-Yaman, SenizPlatinum complexes have proven to be very effective in cancer treatment. However, severe side effects of these drugs have lead scientists to pursue new platinum complex derivatives. A novel blue platinum compound, called Platinum-Blue (Pt-Blue), is one of the promising candidate platinum compounds to be used for tumor treatment. In this study, the interaction of Pt-Blue with bovine serum albumin (BSA) has been investigated using UV-Vis and FTIR spectroscopy. One of the findings is that the drug-protein interaction type depends on the drug concentration. Though Pt-Blue is attached to the surface of BSA at high concentrations, it interacts with a hydrophobic region of the protein at low concentrations with a binding constant of 1.93 x 10(5) M-1. Spectroscopic results indicate the hydrophobic docking position to be around Trp 213 in domain II, which is surrounded by a number of Asp and Glu. During this interaction, helices such as helix-10, helix-18, helix-19 and helix-24 change orientation and/or partially unfold to make room for the compound. Binding constants at high and low concentrations of Pt-Blue are determined using UV-Vis spectroscopy, which are found to be comparable to cisplatin. FTIR spectroscopy also reveals that the interaction between Pt-Blue and BSA is noncovalent, which makes the candidate drug favorable because it is available for DNA binding while being carried by albumin.

