Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    Crystal Data and Indirect Optical Transitions in Tl2ingase4< Crystals
    (Pergamon-elsevier Science Ltd, 2008) Qasrawi, A. F.; Gasanly, N. M.
    The room temperature crystal data and the optical properties of the Bridgman method grown Tl2InGaSe4 crystals are reported and discussed. The X-ray diffraction technique has revealed that Tl2InGaSe4 is a single phase crystal of monoclinic structure. The unit cell lattice parameters, which were recalculated from the X-ray data, are found to be a = 0.77244 nm, b = 0.64945 nm, c = 0.92205 nm and beta = 95.03 degrees. The temperature dependence of the optical band gap of Tl2InGaSe4 single crystal in the temperature region of 290-500 K has also been investigated. The absorption coefficient was calculated from the transmittance and reflectance data in the incident photon energy range of 1.60-2.10 eV. The absorption edge is observed to shift toward lower energy values as temperature increases. The fundamental absorption edge corresponds to indirect allowed transition energy gap of 1.86 eV that exhibited a temperature coefficient gamma = -3.53 x 10(-4) eV/K. (C) 2007 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 5
    Citation - Scopus: 6
    Photoelectronic and Electrical Properties of Tl2ingas4< Layered Crystals
    (Pergamon-elsevier Science Ltd, 2007) Qasrawi, A. F.; Gasanly, N. M.
    Tl2InGaS4 layered crystals are studied through the dark electrical conductivity, space charge limited current and illumination- and temperature-dependent photoconductivity measurements in the temperature regions of 220-350 K, 300-400 K and 200-350 K, respectively. The space charge limited current measurements revealed the existence of a single discrete trapping level located at 0.44 eV. The dark electrical conductivity showed the existence of two energy levels of 0.32 eV and 0.60 eV being dominant above and below 300 K, respectively. The photoconductivity measurements reflected the existence of two other energy levels located at 0.28 eV and 0.19 eV at high and low temperatures, respectively. The photocurrent is observed to increase with increasing temperature up to a maximum temperature of 330 K. The illumination dependence of photoconductivity is found to exhibit supralinear recombination in all the studied temperature ranges. The change in recombination mechanism is attributed to exchange in the behavior of sensitizing and recombination centers. (C) 2006 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 28
    Citation - Scopus: 10
    Electrical Conductivity and Hall Mobility in P-Type Tlgase2 Crystals
    (Pergamon-elsevier Science Ltd, 2004) Qasrawi, AF; Qasrawı, Atef Fayez Hasan; Gasanly, NM; Qasrawı, Atef Fayez Hasan; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics Engineering
    Systematic dark electrical conductivity and Hall mobility measurements have been carried out in the temperature range of 200-350 K on p-type TlGaSe2 crystals. The analysis of the temperature-dependent electrical conductivity and carrier concentration reveals the extrinsic type of conduction with an acceptor impurity level located at 0.33 eV, and donor and acceptor concentrations of 9.0 x 10(15) and 1.3 x 10(16) cm(-3), respectively. A hole and electron effective masses of 0.520m(0) and 0.325m(0), respectively, with a donor to acceptor compensating ratio of 0.69 are also being identified. The Hall mobility is found to be limited by the hole-phonon short-range interactions scattering with a hole-phonon coupling constant of 0.17. (C) 2004 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Energy Band Gap and Oscillator Parameters of Ga4se3< Single Crystals
    (Pergamon-elsevier Science Ltd, 2007) Qasrawi, A. F.; Gasanly, N. M.
    The optical properties of the Bridgman method grown Ga4Se3S crystals have been investigated by means of room temperature, transmittance and reflectance spectral analysis. The optical data have revealed an indirect allowed transition band gap of 2.08 eV. The room temperature refractive index, which was calculated from the reflectance and transmittance data, allowed the identification of the dispersion and oscillator energies, static dielectric constant and static refractive index as 21.08 and 3.85 eV, 6.48 and 2.55, respectively. (C) 2007 Elsevier Ltd. All rights reserved.