2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 60Citation - Scopus: 64Computing Optimal Replacement Time and Mean Residual Life in Reliability Shock Models(Pergamon-elsevier Science Ltd, 2017) Eryilmaz, SerkanIn this paper, matrix-based methods are presented to compute the optimal replacement time and mean residual lifetime of a system under particular class of reliability shock models. The times between successive shocks are assumed to have a common continuous phase-type distribution. The system's lifetime is represented as a compound random variable and some properties of phase-type distributions are utilized. Extreme shock model, run shock model, and generalized extreme shock model are shown to be the members of this class. Graphical illustrations and numerical examples are presented for the run shock model when the interarrival times between shocks follow Erlang distribution. (C) 2016 Elsevier Ltd. All rights reserved.Article Citation - WoS: 14Citation - Scopus: 14The Number of Failed Components in Series-Parallel System and Its Application To Optimal Design(Pergamon-elsevier Science Ltd, 2020) Eryilmaz, Serkan; Ozkurt, Fatma Yerlikaya; Erkan, T. ErmanThe number of components that are failed at the time of system failure is a useful quantity since it gives an idea of how many spares should be available to replace all failed components upon the system failure. In this paper, the number of failed components is considered at subsystem and system levels for the series-parallel system that consists of K subsystems. In particular, the joint behavior of the number of failed components in each subsystem is studied when each subsystem has identical components and different subsystems have different types of components. The results are then used to find the optimal number of components in each subsystem by minimizing an expected cost per unit of time upon the system failure.

