2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 13Citation - Scopus: 15Induced Scattering Limits on Fast Radio Bursts From Stellar Coronae(Iop Publishing Ltd, 2016) Lyubarsky, Yuri; Ostrovska, SofiyaThe origin of fast radio bursts remains a puzzle. Suggestions have been made that they are produced within the Earth's atmosphere, in stellar coronae, in other galaxies, or at cosmological distances. If they are extraterrestrial, the implied brightness temperature is very high, and therefore the induced scattering places constraints on possible models. In this paper, constraints are obtained on flares from coronae of nearby stars. It is shown that the radio pulses with the observed power could not be generated if the plasma density within and in the nearest vicinity of the source is as high as is necessary to provide the observed dispersion measure. However, one cannot exclude the possibility that the pulses are generated within a bubble with a very low density and pass through the dense plasma only in the outer corona.Article Citation - WoS: 3Citation - Scopus: 34D Printing of Reusable Mechanical Metamaterial Energy Absorber, Experimental and Numerical Investigation(Iop Publishing Ltd, 2025) Fallah, Ali; Saleem, Qandeel; Scalet, Giulia; Koc, BahattinThis study investigates the compression behavior, energy absorption, shape memory properties, and reusability of 4D-printed smart mechanical metamaterials. Four structural configurations, i.e. honeycomb, re-entrant, and two modified re-entrant designs were developed to assess microstructure effects. Samples were fabricated using Polylactic Acid (PLA), a widely used shape memory polymer (SMP) in 4D printing, and polyethylene terephthalate glycol (PETG), an emerging SMP with demonstrated shape memory performance in recent studies. Cold-programming-induced shape recovery was evaluated at room temperature, simulating real-world conditions. Finite element simulations of compression and shape memory cycles matched experimental results well. Auxetic samples with negative Poisson's ratios showed superior energy absorption. However, only PETG demonstrated sufficient reusability, while PLA proved unsuitable for reusable designs. The PETG-3 modified re-entrant structure exhibited the best performance, with high energy absorption, delayed densification onset, and shape recovery and reusability factors of 0.95 and 0.96, respectively. Findings highlight the importance of considering both shape recovery and reusability when designing smart structures to address industrial challenges.

