Search Results

Now showing 1 - 4 of 4
  • Conference Object
    Securing the Internet of Things: Challenges and Complementary Overview of Machine Learning-Based Intrusion Detection
    (Institute of Electrical and Electronics Engineers Inc., 2024) Isin, L.I.; Dalveren, Y.; Leka, E.; Kara, A.
    The significant increase in the number of IoT devices has also brought with it various security concerns. The ability of these devices to collect a lot of data, including personal information, is one of the important reasons for these concerns. The integration of machine learning into systems that can detect security vulnerabilities has been presented as an effective solution in the face of these concerns. In this review, it is aimed to examine the machine learning algorithms used in the current studies in the literature for IoT network security. Based on the authors' previous research in physical layer security, this research also aims to investigate the intersecting lines between upper layers of security and physical layer security. To achieve this, the current state of the area is presented. Then, relevant studies are examined to identify the key challenges and research directions as an initial overview within the authors' ongoing project. © 2024 IEEE.
  • Conference Object
    Citation - Scopus: 2
    Enhancing Image Resolution With Generative Adversarial Networks
    (Institute of Electrical and Electronics Engineers Inc., 2022) Yildiz,B.
    Super-resolution is the process of generating high-resolution images from low-resolution images. There are a variety of practical applications used in real-world problems such as high-definition content creation, surveillance imaging, gaming, and medical imaging. Super-resolution has been the subject of many researches over the past few decades, as improving image resolution offers many advantages. Going beyond the previously presented methods, Generative Adversarial Networks offers a very promising solution. In this work, we will use the Generative Adversarial Networks-based approach to obtain 4x resolution images that are perceptually better than previous solutions. Our extensive experiments, including perceptual comparison, Peak Signal-to-Noise Ratio, and classification success metrics, show that our approach is quite promising for image super-resolution. © 2022 IEEE.
  • Conference Object
    Citation - Scopus: 2
    An Undergraduate Curriculum for Deep Learning
    (Institute of Electrical and Electronics Engineers Inc., 2018) Tirkes,G.; Ekin,C.C.; Engul,G.; Bostan,A.; Karakaya,M.
    Deep Learning (DL) is an interesting and rapidly developing field of research which has been currently utilized as a part of industry and in many disciplines to address a wide range of problems, from image classification, computer vision, video games, bioinformatics, and handwriting recognition to machine translation. The starting point of this study is the recognition of a big gap between the sector need of specialists in DL technology and the lack of sufficient education provided by the universities. Higher education institutions are the best environment to provide this expertise to the students. However, currently most universities do not provide specifically designed DL courses to their students. Thus, the main objective of this study is to design a novel curriculum including two courses to facilitate teaching and learning of DL topic. The proposed curriculum will enable students to solve real-world problems by applying DL approaches and gain necessary background to adapt their knowledge to more advanced, industry-specific fields. © 2018 IEEE.
  • Conference Object
    An Undergraduate Curriculum for Deep Learning
    (Institute of Electrical and Electronics Engineers Inc., 2018) Tirkes,G.; Ekin,C.C.; Engul,G.; Bostan,A.; Karakaya,M.
    Deep Learning (DL) is an interesting and rapidly developing field of research which has been currently utilized as a part of industry and in many disciplines to address a wide range of problems, from image classification, computer vision, video games, bioinformatics, and handwriting recognition to machine translation. The starting point of this study is the recognition of a big gap between the sector need of specialists in DL technology and the lack of sufficient education provided by the universities. Higher education institutions are the best environment to provide this expertise to the students. However, currently most universities do not provide specifically designed DL courses to their students. Thus, the main objective of this study is to design a novel curriculum including two courses to facilitate teaching and learning of DL topic. The proposed curriculum will enable students to solve real-world problems by applying DL approaches and gain necessary background to adapt their knowledge to more advanced, industry-specific fields. © 2018 IEEE.