Search Results

Now showing 1 - 3 of 3
  • Conference Object
    Deep Learning and Current Trends in Machine Learning
    (Institute of Electrical and Electronics Engineers Inc., 2018) Bostan,A.; Ekin,C.; Sengul,G.; Karakaya,M.; Tirkes,G.
    Academic interest and commercial attention can be used to identify how much potential a novel technology may have. Since the prospective advantages in it may help solving some problems that are not solved yet or improving the performance of readily available ones. In this study, we have investigated the Web of Science (WOS) indexing service database for the publications on Deep Learning (DL), Machine Learning (ML), Convolutional Neural Networks (CNN), and Image Processing to reveal out the current trend. The figures indicate the strong potential in DL approach especially in image processing domain. © 2018 IEEE.
  • Conference Object
    Deep Learning and Current Trends in Machine Learning
    (Institute of Electrical and Electronics Engineers Inc., 2018) Bostan,A.; Ekin,C.; Sengul,G.; Karakaya,M.; Tirkes,G.
    Academic interest and commercial attention can be used to identify how much potential a novel technology may have. Since the prospective advantages in it may help solving some problems that are not solved yet or improving the performance of readily available ones. In this study, we have investigated the Web of Science (WOS) indexing service database for the publications on Deep Learning (DL), Machine Learning (ML), Convolutional Neural Networks (CNN), and Image Processing to reveal out the current trend. The figures indicate the strong potential in DL approach especially in image processing domain. © 2018 IEEE.
  • Conference Object
    Citation - Scopus: 2
    Enhancing Image Resolution With Generative Adversarial Networks
    (Institute of Electrical and Electronics Engineers Inc., 2022) Yildiz,B.
    Super-resolution is the process of generating high-resolution images from low-resolution images. There are a variety of practical applications used in real-world problems such as high-definition content creation, surveillance imaging, gaming, and medical imaging. Super-resolution has been the subject of many researches over the past few decades, as improving image resolution offers many advantages. Going beyond the previously presented methods, Generative Adversarial Networks offers a very promising solution. In this work, we will use the Generative Adversarial Networks-based approach to obtain 4x resolution images that are perceptually better than previous solutions. Our extensive experiments, including perceptual comparison, Peak Signal-to-Noise Ratio, and classification success metrics, show that our approach is quite promising for image super-resolution. © 2022 IEEE.