Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 16
    Citation - Scopus: 16
    q-bernstein Polynomials of the Cauchy Kernel
    (Elsevier Science inc, 2008) Ostrovska, Sofiya
    Due to the fact that in the case q > 1, q-Bernstein polynomials are not positive linear operators on C[0, 1], the study of their approximation properties is essentially more difficult than that for 0 < q < 1. Despite the intensive research conducted in the area lately, the problem of describing the class of functions in C[0, 1] uniformly approximated by their q-Bernstein polynomials (q > 1) is still open. In this paper, the q-Bernstein polynomials B-n,B-q(f(a); z) of the Cauchy kernel f(a) = 1/(z - a), a is an element of C \ [0, 1] are found explicitly and their properties are investigated. In particular, it is proved that if q > 1, then polynomials B-n,B-q(f(a); z) converge to f(a) uniformly on any compact set K subset of {z : vertical bar z vertical bar < vertical bar a vertical bar}. This result is sharp in the following sense: on any set with an accumulation point in {z : vertical bar z vertical bar > vertical bar a vertical bar}, the sequence {B-n,B-q(f(a); z) is not even uniformly bounded. (C) 2007 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    The q-bernstein Polynomials of the Cauchy Kernel With a Pole on [0,1] in the Case q > 1
    (Elsevier Science inc, 2013) Ostrovska, Sofiya; Ozban, Ahmet Yasar
    The problem to describe the Bernstein polynomials of unbounded functions goes back to Lorentz. The aim of this paper is to investigate the convergence properties of the q-Bernstein polynomials B-n,B-q(f; x) of the Cauchy kernel 1/x-alpha with a pole alpha is an element of [0, 1] for q > 1. The previously obtained results allow one to describe these properties when a pole is different from q(-m) for some m is an element of {0, 1, 2, ...}. In this context, the focus of the paper is on the behavior of polynomials B-n,B-q(f; x) for the functions of the form f(m)(x) = 1/(x - q(-m)), x not equal q(-m) and f(m)(q(-m)) = a, a is an element of R. Here, the problem is examined both theoretically and numerically in detail. (C) 2013 Elsevier Inc. All rights reserved.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    On the Analyticity of Functions Approximated by Their q-bernstein Polynomials When q > 1
    (Elsevier Science inc, 2010) Ostrovskii, Iossif; Ostrovska, Sofiya
    Since in the case q > 1 the q-Bernstein polynomials B-n,B-q are not positive linear operators on C[0, 1], the investigation of their convergence properties for q > 1 turns out to be much harder than the one for 0 < q < 1. What is more, the fast increase of the norms parallel to B-n,B-q parallel to as n -> infinity, along with the sign oscillations of the q-Bernstein basic polynomials when q > 1, create a serious obstacle for the numerical experiments with the q-Bernstein polynomials. Despite the intensive research conducted in the area lately, the class of functions which are uniformly approximated by their q-Bernstein polynomials on [0, 1] is yet to be described. In this paper, we prove that if f : [0, 1] -> C is analytic at 0 and can be uniformly approximated by its q-Bernstein polynomials (q > 1) on [0, 1], then f admits an analytic continuation from [0, 1] into {z: vertical bar z vertical bar < 1}. (C) 2010 Elsevier Inc. All rights reserved.