On the analyticity of functions approximated by their <i>q</i>-Bernstein polynomials when <i>q</i> &gt; 1

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Mathematics
(2000)
The Atılım University Department of Mathematics was founded in 2000 and it offers education in English. The Department offers students the opportunity to obtain a certificate in Mathematical Finance or Cryptography, aside from their undergraduate diploma. Our students may obtain a diploma secondary to their diploma in Mathematics with the Double-Major Program; as well as a certificate in their minor alongside their diploma in Mathematics through the Minor Program. Our graduates may pursue a career in academics at universities, as well as be hired in sectors such as finance, education, banking, and informatics. Our Department has been accredited by the evaluation and accreditation organization FEDEK for a duration of 5 years (until September 30th, 2025), the maximum FEDEK accreditation period achievable. Our Department is globally and nationally among the leading Mathematics departments with a program that suits international standards and a qualified academic staff; even more so for the last five years with our rankings in the field rankings of URAP, THE, USNEWS and WEBOFMETRIC.

Journal Issue

Abstract

Since in the case q > 1 the q-Bernstein polynomials B-n,B-q are not positive linear operators on C[0, 1], the investigation of their convergence properties for q > 1 turns out to be much harder than the one for 0 < q < 1. What is more, the fast increase of the norms parallel to B-n,B-q parallel to as n -> infinity, along with the sign oscillations of the q-Bernstein basic polynomials when q > 1, create a serious obstacle for the numerical experiments with the q-Bernstein polynomials. Despite the intensive research conducted in the area lately, the class of functions which are uniformly approximated by their q-Bernstein polynomials on [0, 1] is yet to be described. In this paper, we prove that if f : [0, 1] -> C is analytic at 0 and can be uniformly approximated by its q-Bernstein polynomials (q > 1) on [0, 1], then f admits an analytic continuation from [0, 1] into {z: vertical bar z vertical bar < 1}. (C) 2010 Elsevier Inc. All rights reserved.

Description

Keywords

q-Integers, q-Bernstein polynomials, Uniform convergence, Analytic function, Analytic continuation

Turkish CoHE Thesis Center URL

Fields of Science

Citation

2

WoS Q

Q1

Scopus Q

Source

Volume

217

Issue

1

Start Page

65

End Page

72

Collections