On the Analyticity of Functions Approximated by Their <i>q</I>-bernstein Polynomials When <i>q</I> > 1
| dc.contributor.author | Ostrovskii, Iossif | |
| dc.contributor.author | Ostrovska, Sofiya | |
| dc.date.accessioned | 2024-07-05T15:16:05Z | |
| dc.date.available | 2024-07-05T15:16:05Z | |
| dc.date.issued | 2010 | |
| dc.description.abstract | Since in the case q > 1 the q-Bernstein polynomials B-n,B-q are not positive linear operators on C[0, 1], the investigation of their convergence properties for q > 1 turns out to be much harder than the one for 0 < q < 1. What is more, the fast increase of the norms parallel to B-n,B-q parallel to as n -> infinity, along with the sign oscillations of the q-Bernstein basic polynomials when q > 1, create a serious obstacle for the numerical experiments with the q-Bernstein polynomials. Despite the intensive research conducted in the area lately, the class of functions which are uniformly approximated by their q-Bernstein polynomials on [0, 1] is yet to be described. In this paper, we prove that if f : [0, 1] -> C is analytic at 0 and can be uniformly approximated by its q-Bernstein polynomials (q > 1) on [0, 1], then f admits an analytic continuation from [0, 1] into {z: vertical bar z vertical bar < 1}. (C) 2010 Elsevier Inc. All rights reserved. | en_US |
| dc.identifier.doi | 10.1016/j.amc.2010.04.020 | |
| dc.identifier.issn | 0096-3003 | |
| dc.identifier.scopus | 2-s2.0-77955416547 | |
| dc.identifier.uri | https://doi.org/10.1016/j.amc.2010.04.020 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14411/1595 | |
| dc.language.iso | en | en_US |
| dc.publisher | Elsevier Science inc | en_US |
| dc.relation.ispartof | Applied Mathematics and Computation | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | q-Integers | en_US |
| dc.subject | q-Bernstein polynomials | en_US |
| dc.subject | Uniform convergence | en_US |
| dc.subject | Analytic function | en_US |
| dc.subject | Analytic continuation | en_US |
| dc.title | On the Analyticity of Functions Approximated by Their <i>q</I>-bernstein Polynomials When <i>q</I> > 1 | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 7102909189 | |
| gdc.author.scopusid | 35610828900 | |
| gdc.author.wosid | Ostrovska, Sofiya/AAA-2156-2020 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Atılım University | en_US |
| gdc.description.departmenttemp | [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Ostrovskii, Iossif] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey | en_US |
| gdc.description.endpage | 72 | en_US |
| gdc.description.issue | 1 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 65 | en_US |
| gdc.description.volume | 217 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W2062504940 | |
| gdc.identifier.wos | WOS:000280580700007 | |
| gdc.oaire.accesstype | BRONZE | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5241849E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Functional analysis | |
| gdc.oaire.keywords | Analyticity | |
| gdc.oaire.keywords | Convergence properties | |
| gdc.oaire.keywords | Polynomials | |
| gdc.oaire.keywords | Q-Integers | |
| gdc.oaire.keywords | Intensive research | |
| gdc.oaire.keywords | Amber | |
| gdc.oaire.keywords | Positive linear operators | |
| gdc.oaire.keywords | Analytic function | |
| gdc.oaire.keywords | Bernstein polynomial | |
| gdc.oaire.keywords | Analytic continuation | |
| gdc.oaire.keywords | Functions | |
| gdc.oaire.keywords | 518 | |
| gdc.oaire.keywords | Analytic functions | |
| gdc.oaire.keywords | Q-Bernstein polynomials | |
| gdc.oaire.keywords | Uniform convergence | |
| gdc.oaire.keywords | Mathematical operators | |
| gdc.oaire.keywords | Numerical experiments | |
| gdc.oaire.keywords | Approximation in the complex plane | |
| gdc.oaire.keywords | uniform convergence | |
| gdc.oaire.keywords | \(q\)-Bernstein polynomials | |
| gdc.oaire.keywords | \(q\)-integers | |
| gdc.oaire.keywords | analytic continuation | |
| gdc.oaire.popularity | 4.5995757E-10 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.13 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.scopuscites | 2 | |
| gdc.scopus.citedcount | 2 | |
| gdc.virtual.author | Ostrovska, Sofiya | |
| gdc.wos.citedcount | 2 | |
| relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
| relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
| relation.isOrgUnitOfPublication | 9fc70983-6166-4c9a-8abd-5b6045f7579d | |
| relation.isOrgUnitOfPublication | 50be38c5-40c4-4d5f-b8e6-463e9514c6dd | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |
