On the Analyticity of Functions Approximated by Their <i>q</I>-bernstein Polynomials When <i>q</I> &gt; 1

dc.authorscopusid 7102909189
dc.authorscopusid 35610828900
dc.authorwosid Ostrovska, Sofiya/AAA-2156-2020
dc.contributor.author Ostrovskii, Iossif
dc.contributor.author Ostrovska, Sofiya
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-05T15:16:05Z
dc.date.available 2024-07-05T15:16:05Z
dc.date.issued 2010
dc.department Atılım University en_US
dc.department-temp [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Ostrovskii, Iossif] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey en_US
dc.description.abstract Since in the case q > 1 the q-Bernstein polynomials B-n,B-q are not positive linear operators on C[0, 1], the investigation of their convergence properties for q > 1 turns out to be much harder than the one for 0 < q < 1. What is more, the fast increase of the norms parallel to B-n,B-q parallel to as n -> infinity, along with the sign oscillations of the q-Bernstein basic polynomials when q > 1, create a serious obstacle for the numerical experiments with the q-Bernstein polynomials. Despite the intensive research conducted in the area lately, the class of functions which are uniformly approximated by their q-Bernstein polynomials on [0, 1] is yet to be described. In this paper, we prove that if f : [0, 1] -> C is analytic at 0 and can be uniformly approximated by its q-Bernstein polynomials (q > 1) on [0, 1], then f admits an analytic continuation from [0, 1] into {z: vertical bar z vertical bar < 1}. (C) 2010 Elsevier Inc. All rights reserved. en_US
dc.identifier.citationcount 2
dc.identifier.doi 10.1016/j.amc.2010.04.020
dc.identifier.endpage 72 en_US
dc.identifier.issn 0096-3003
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-77955416547
dc.identifier.startpage 65 en_US
dc.identifier.uri https://doi.org/10.1016/j.amc.2010.04.020
dc.identifier.uri https://hdl.handle.net/20.500.14411/1595
dc.identifier.volume 217 en_US
dc.identifier.wos WOS:000280580700007
dc.identifier.wosquality Q1
dc.institutionauthor Ostrovska, Sofiya
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject q-Integers en_US
dc.subject q-Bernstein polynomials en_US
dc.subject Uniform convergence en_US
dc.subject Analytic function en_US
dc.subject Analytic continuation en_US
dc.title On the Analyticity of Functions Approximated by Their <i>q</I>-bernstein Polynomials When <i>q</I> &gt; 1 en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections