On the analyticity of functions approximated by their <i>q</i>-Bernstein polynomials when <i>q</i> > 1
dc.authorscopusid | 7102909189 | |
dc.authorscopusid | 35610828900 | |
dc.authorwosid | Ostrovska, Sofiya/AAA-2156-2020 | |
dc.contributor.author | Ostrovskii, Iossif | |
dc.contributor.author | Ostrovska, Sofiya | |
dc.contributor.other | Mathematics | |
dc.date.accessioned | 2024-07-05T15:16:05Z | |
dc.date.available | 2024-07-05T15:16:05Z | |
dc.date.issued | 2010 | |
dc.department | Atılım University | en_US |
dc.department-temp | [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Ostrovskii, Iossif] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey | en_US |
dc.description.abstract | Since in the case q > 1 the q-Bernstein polynomials B-n,B-q are not positive linear operators on C[0, 1], the investigation of their convergence properties for q > 1 turns out to be much harder than the one for 0 < q < 1. What is more, the fast increase of the norms parallel to B-n,B-q parallel to as n -> infinity, along with the sign oscillations of the q-Bernstein basic polynomials when q > 1, create a serious obstacle for the numerical experiments with the q-Bernstein polynomials. Despite the intensive research conducted in the area lately, the class of functions which are uniformly approximated by their q-Bernstein polynomials on [0, 1] is yet to be described. In this paper, we prove that if f : [0, 1] -> C is analytic at 0 and can be uniformly approximated by its q-Bernstein polynomials (q > 1) on [0, 1], then f admits an analytic continuation from [0, 1] into {z: vertical bar z vertical bar < 1}. (C) 2010 Elsevier Inc. All rights reserved. | en_US |
dc.identifier.citation | 2 | |
dc.identifier.doi | 10.1016/j.amc.2010.04.020 | |
dc.identifier.endpage | 72 | en_US |
dc.identifier.issn | 0096-3003 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-77955416547 | |
dc.identifier.startpage | 65 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.amc.2010.04.020 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/1595 | |
dc.identifier.volume | 217 | en_US |
dc.identifier.wos | WOS:000280580700007 | |
dc.identifier.wosquality | Q1 | |
dc.institutionauthor | Ostrovska, Sofiya | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Science inc | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | q-Integers | en_US |
dc.subject | q-Bernstein polynomials | en_US |
dc.subject | Uniform convergence | en_US |
dc.subject | Analytic function | en_US |
dc.subject | Analytic continuation | en_US |
dc.title | On the analyticity of functions approximated by their <i>q</i>-Bernstein polynomials when <i>q</i> > 1 | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isAuthorOfPublication.latestForDiscovery | af5756ab-54dd-454a-ac68-0babf2e35b43 | |
relation.isOrgUnitOfPublication | 31ddeb89-24da-4427-917a-250e710b969c | |
relation.isOrgUnitOfPublication.latestForDiscovery | 31ddeb89-24da-4427-917a-250e710b969c |