On the Analyticity of Functions Approximated by Their <i>q</I>-bernstein Polynomials When <i>q</I> &gt; 1

dc.contributor.author Ostrovskii, Iossif
dc.contributor.author Ostrovska, Sofiya
dc.date.accessioned 2024-07-05T15:16:05Z
dc.date.available 2024-07-05T15:16:05Z
dc.date.issued 2010
dc.description.abstract Since in the case q > 1 the q-Bernstein polynomials B-n,B-q are not positive linear operators on C[0, 1], the investigation of their convergence properties for q > 1 turns out to be much harder than the one for 0 < q < 1. What is more, the fast increase of the norms parallel to B-n,B-q parallel to as n -> infinity, along with the sign oscillations of the q-Bernstein basic polynomials when q > 1, create a serious obstacle for the numerical experiments with the q-Bernstein polynomials. Despite the intensive research conducted in the area lately, the class of functions which are uniformly approximated by their q-Bernstein polynomials on [0, 1] is yet to be described. In this paper, we prove that if f : [0, 1] -> C is analytic at 0 and can be uniformly approximated by its q-Bernstein polynomials (q > 1) on [0, 1], then f admits an analytic continuation from [0, 1] into {z: vertical bar z vertical bar < 1}. (C) 2010 Elsevier Inc. All rights reserved. en_US
dc.identifier.doi 10.1016/j.amc.2010.04.020
dc.identifier.issn 0096-3003
dc.identifier.scopus 2-s2.0-77955416547
dc.identifier.uri https://doi.org/10.1016/j.amc.2010.04.020
dc.identifier.uri https://hdl.handle.net/20.500.14411/1595
dc.language.iso en en_US
dc.publisher Elsevier Science inc en_US
dc.relation.ispartof Applied Mathematics and Computation
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject q-Integers en_US
dc.subject q-Bernstein polynomials en_US
dc.subject Uniform convergence en_US
dc.subject Analytic function en_US
dc.subject Analytic continuation en_US
dc.title On the Analyticity of Functions Approximated by Their <i>q</I>-bernstein Polynomials When <i>q</I> &gt; 1 en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 7102909189
gdc.author.scopusid 35610828900
gdc.author.wosid Ostrovska, Sofiya/AAA-2156-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Atılım University en_US
gdc.description.departmenttemp [Ostrovska, Sofiya] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey; [Ostrovskii, Iossif] Bilkent Univ, Dept Math, TR-06800 Ankara, Turkey en_US
gdc.description.endpage 72 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 65 en_US
gdc.description.volume 217 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W2062504940
gdc.identifier.wos WOS:000280580700007
gdc.oaire.accesstype BRONZE
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5241849E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Functional analysis
gdc.oaire.keywords Analyticity
gdc.oaire.keywords Convergence properties
gdc.oaire.keywords Polynomials
gdc.oaire.keywords Q-Integers
gdc.oaire.keywords Intensive research
gdc.oaire.keywords Amber
gdc.oaire.keywords Positive linear operators
gdc.oaire.keywords Analytic function
gdc.oaire.keywords Bernstein polynomial
gdc.oaire.keywords Analytic continuation
gdc.oaire.keywords Functions
gdc.oaire.keywords 518
gdc.oaire.keywords Analytic functions
gdc.oaire.keywords Q-Bernstein polynomials
gdc.oaire.keywords Uniform convergence
gdc.oaire.keywords Mathematical operators
gdc.oaire.keywords Numerical experiments
gdc.oaire.keywords Approximation in the complex plane
gdc.oaire.keywords uniform convergence
gdc.oaire.keywords \(q\)-Bernstein polynomials
gdc.oaire.keywords \(q\)-integers
gdc.oaire.keywords analytic continuation
gdc.oaire.popularity 4.5995757E-10
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.13
gdc.opencitations.count 1
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
gdc.virtual.author Ostrovska, Sofiya
gdc.wos.citedcount 2
relation.isAuthorOfPublication af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isAuthorOfPublication.latestForDiscovery af5756ab-54dd-454a-ac68-0babf2e35b43
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication 9fc70983-6166-4c9a-8abd-5b6045f7579d
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections