Search Results

Now showing 1 - 9 of 9
  • Article
    Citation - WoS: 10
    Citation - Scopus: 11
    Dispersive Optical Constants of Thermally Deposited Agin5s8< Thin Films
    (Elsevier Science Sa, 2008) Qasrawi, A. F.
    Agln(5)S(8) thin films were obtained by the thermal evaporation of Agln(5)S(8) crystals onto ultrasonically cleaned glass substrates. The films are found to exhibit polycrystalline cubic structure. The calculated lattice parameter of the unit cell (a) is 10.78 angstrom. The transmittance data of the as grown films which was recorded at 300 K in the incidence wavelength (lambda) range of 320-1000 nm are used to calculate the refractive, n(lambda). The transmittance and reflectance data are also used to calculate the absorption coefficient of the as grown Agln5S8 thin films. The fundamental absorption edge is found to be corresponding to a direct allowed transitions energy band gap. This band-to-band transition energy is found to be 1.78 eV and it is consistent with that reported for Agln(5)S(8) single crystals. (c) 2007 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 9
    Structural and Optoelectronic Properties of Cds/Y Thin Films
    (Elsevier Science Sa, 2019) Qasrawi, A. F.; Abed, Tamara Y.
    In the current study, the structural, optical, photoelectrical and electrical properties of CdS/Y/CdS thin films are investigated. The current design include the evaporation of a layer of 70 nm thick yttrium between two layers of CdS. Each CdS layer is of thickness of 500 nm. It is observed that the yttrium slab increased the microstrain, defect density, stacking faults and decreased the grain size and redshifts the indirect allowed transitions energy band gap of CdS. In addition an enhancement by similar to 5 times in the light absorbability is detected at 1.74 eV. The enhanced absorbance results in increasing the photocurrent by similar to 21 times and changed the recombination mechanism from a trap assisted recombination to supralinear recombination mechanisms. Moreover, the ac signal analysis in the frequency domain of 10-1800 MHz has shown that the yttrium forces the CdS to exhibit negative capacitance effect and make it behave as band stop filter with notch frequency of 1520 MHz. The quality of the CdS/Y/CdS films as microwave cavities are screened by the evaluation of the return loss which revealed good features of the nanostructured films as microwave receivers.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Characterization of the A1/Ge/In2Se3/Ga2S3/Al hybrid tunneling barriers designed for Gigahertz/Terahertz applications
    (Elsevier Science Sa, 2018) Qasrawi, A. F.; Omareya, Olfat A.
    In the current work, we report the design and performance of a tunneling amorphous thin film hybrid device made of Ge/In2Se3/Ga2S3 sandwiched between two aluminum thin films. Each of the stacked semiconducting layers are of 200 nm thicknesses. The hybrid device which is composed of a p-n junction between two Schottky shoulders is designed to have two valence band offsets of 0.59 and 0.84 eV at the Ge/In2Se3 and at In2Se3/Ga2S3 interfaces, respectively The offsets which caused two quantum confinements forces the device to exhibit field effect assisted thermionic and thermionic transport mechanisms under the reverse and forward biasing conditions, respectively. When an alternating current signal is imposed between the terminals of the device, the device conducted by the quantum mechanical tunneling of charge carriers and by the correlated barrier hopping above and below 0.180 GHz, respectively. The hybrid structure are also observed to exhibit series and parallel resonance at the switching frequency between the two conduction mechanisms. It also exhibited negative differential capacitance effect in the frequency domain of 0.18-1.80 GHz. For the Al/Ge/In(2)Se3/Ga2S3/Al hybrid structure the microwave cutoff frequency reached 100 GHz. The latter value is promising as it indicates the ability of using the device as fast switches and microwave/Tera wave traps.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Temperature effects on the optoelectronic properties of AgIn5S8 thin films
    (Elsevier Science Sa, 2011) Qasrawi, A. F.
    Polycrystalline AgIn5S8 thin films are obtained by the thermal evaporation of AgIn5S8 crystals onto ultrasonically cleaned glass substrates under a pressure of similar to 1.3 x 10(-3) Pa. The temperature dependence of the optical band gap and photoconductivity of these films was studied in the temperature regions of 300-450 K and 40-300 K, respectively. The heat treatment effect at annealing temperatures of 350, 450 and 550 K on the temperature dependent photoconductivity is also investigated. The absorption coefficient, which was studied in the incidence photon energy range of 1.65-2.55 eV, increased with increasing temperature. Consistently, the absorption edge shifts to lower energy values as temperature increases. The fundamental absorption edge which corresponds to a direct allowed transition energy band gap of 1.78 eV exhibited a temperature coefficient of -3.56 x 10(-4) eV/K. The 0 K energy band gap is estimated as 1.89 eV. AgIn5S8 films are observed to be photoconductive. The highest and most stable temperature invariant photocurrent was obtained at an annealing temperature of 550 K. The photoconductivity kinetics was attributed to the structural modifications caused by annealing and due to the trapping-recombination centers' exchange. (C) 2010 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 19
    Temperature Dependence of the Direct Allowed Transitions Band Gap and Optical Constants of Polycrystalline Α-in2se3< Thin Films
    (Elsevier Science Sa, 2006) Qasrawi, A. F.
    Polycrystalline alpha-In2Se3 thin films were obtained by the thermal evaporation of alpha-In2Se3 crystals onto glass substrates kept at temperature of 200 degrees C. The temperature dependence of the optical band gap in the temperature region of 300-480 K and the room temperature refractive index, it (lambda), of these films have been investigated. The absorption edge shifts to lower energy values as temperature increases. The fundamental absorption edge corresponds to a direct allowed transitions energy gap that exhibits a temperature coefficient of -8.51 x 10(-4) (eV/K). The room temperature n(lambda) which was calculated from the transmittance data allowed the identification of the oscillator strength and energy, static dielectric constant and static refractive index as 20.7 and 2.15 eV, 10.70 and 3.26, respectively. (c) 2006 Elsevier B.V. All rights reserved.
  • Conference Object
    Citation - WoS: 4
    Citation - Scopus: 3
    Temperature-dependent material characterization of CuZnSe2 thin films
    (Elsevier Science Sa, 2020) Gullu, H. H.; Surucu, O.; Terlemezoglu, M.; Isik, M.; Ercelebi, C.; Gasanly, N. M.; Parlak, M.
    In the present work, CuZnSe2 (CZSe) thin films were co-deposited by magnetron sputtering of ZnSe and Cu targets. The structural analyses resulted in the stoichiometric elemental composition and polycrystalline nature without secondary phase contribution in the film structure. Optical and electrical properties of CZSe thin films were investigated using temperature-dependent optical transmission and electrical conductivity measurements. The band gap energy values were obtained using transmittance spectra under the light of expression relating absorption coefficient to incident photon energy. Band gap energy values were found in decreasing behavior from 2.31 to 2.27 eV with increase in temperature from 10 to 300 K. Temperature-band gap dependency was evaluated by Varshni and O'Donnell models to detail the optical parameters of the thin films. The experimental dark and photoconductivity values were investigated by thermionic emission model over the grain boundary potential. Room temperature conductivity values were obtained in between 0.91 and 4.65 ( x 10(-4) Omega(-1)cm(-1)) under various illumination intensities. Three different linear conductivity regions were observed in the temperature dependent profile. These linear regions were analyzed to extract the activation energy values.
  • Article
    Citation - WoS: 26
    Citation - Scopus: 30
    Electrochemical Polymerization of 9-Fluorenecarboxylic Acid and Its Electrochromic Device Application
    (Elsevier Science Sa, 2008) Bezgin, Buket; Cihaner, Atilla; Onal, Ahmet M.
    Poly(9-fluorenecarboxylic acid) (PFCA) was synthesized by electrochemical oxidation of 9-fluorenecarboxylic acid (FCA) using a mixture of nitromethane and boron trifluoride diethyl etherate as the solvent and tetrabutylammonium tetrafluoroborate as the supporting electrolyte. An insoluble and conducting brownish-orange film was deposited on the electrode surface, both during repetitive cycling and constant potential electrolysis at 1.15 V. Characterization of the polymer film has been carried out using Fourier Transform Infrared spectroscopy technique and thermal behavior was studied via thermal gravimetric analysis. Structural analysis showed that the polymerization of FCA occurred at 2,7-position. Spectroelectrochemical behavior of the polymer film on indium tin oxide working electrode was studied by recording the electronic absorption spectra, in-situ, in monomer-free electrolytic solution at different potentials and it is found that the PFCA film can be reversibly cycled between 0.0 V and 1.2 V Furthermore, a dual type electrochromic device based on PFCA was constructed and its spectroelectrochemical properties were investigated. The electrochromic device exhibits color change from transparent to dark blue with a good open circuit memory. (c) 2008 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Structural, Optical and Electrical Properties of Ybinse Thin Films
    (Elsevier Science Sa, 2016) Alharbi, S. R.; Qasrawi, A. F.
    In this work, the compositional, the structural, the vibrational, the optical and the electrical characterizations of the YbInSe compound are investigated by means of energy dispersion X-ray analysis, scanning electron microscopy and X-ray diffraction, Raman spectroscopy, ultraviolet-visible light spectrophotometry, impedance spectroscopy and temperature dependent electrical conductivity, respectively. The 300 nm thick YbInSe films which were prepared by the co-evaporation of the source materials under a vacuum pressure of 10(-5) mbar, are observed to exhibit nanocrystalline clusters of size of 27 nm regularly distributed among an amorphous structure. The most intensive Raman active lines are observed at 150 and 254 cm(-1). In addition, the optical analysis has shown that the films exhibit a direct forbidden electronic transitions type energy band gap of 1.07 eV. The optical transitions are associated with interband tail states of width of 0.28 eV. Moreover, the real and imaginary parts of dielectric spectra which were analyzed in the frequency range of 270-1000 THz, were analyzed in accordance with the single oscillator and the Lorentz models, respectively. The modeling allowed determining the oscillator and dispersion energies, the terahertz free carrier scattering time, the free holes effective mass, the carrier density, the drift mobility and the reduced resonant frequency for the YbinSe films. In the electronic part of study, the temperature dependent dc electrical conductivity analysis, indicated the domination of the variable range hopping transport mechanism below 335 K, the thermal excitation of charge carriers in the range of 337390 K and the extrinsic-intrinsic transition property at 390 K. The ac conductivity spectra which were recorded in the frequency range of 10-1500 MHz, revealed the domination of the correlated barrier hopping of free carriers between pairs of localized states at the Fermi level. (C) 2016 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 10
    Citation - Scopus: 10
    Light Intensity Effects on Electrical Properties of Agin5s8< Thin Films
    (Elsevier Science Sa, 2011) Qasrawi, A. F.
    The light illumination effects on the current conduction mechanism in thermally annealed polycrystalline AgIn5S8 thin films has been investigated by means of dark and photoexcited conductivity measurements as a function of temperature. The dark electrical conductivity analysis in the temperature region of 30-300 K, reflected the domination of thermionic emission and variable range hopping of charge carriers over the grain boundaries above and below 90 K, respectively. Conductivity activation energies of similar to 155 and 78 meV (in the temperature regions of 230-300 K and 90-220 K. respectively), a density of localized states (evaluated assuming a localization length of 5A(0)) of 1.17 x 10(20) cm(-3) eV(-1), an average hopping distance of 41.51 A(0) (at 60 K) and an average hopping energy of 28.64 meV have been determined from the dark electrical measurements. When the sample was exposed to illumination at specific excitation intensity, the values of the conductivity activation energy, the average hopping energy and the average hopping range were decreased significantly. On the other hand, the density of localized states near the Fermi level increased when the light intensity was increased. Such behavior is attributed to the temporary shift in Fermi level and/or trap density reduction by electron-hole recombination. (C) 2011 Elsevier B.V. All rights reserved.