2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 8Citation - Scopus: 9Electronic, Optical and Thermodynamic Characteristics of Bi12sio20 Sillenite: First Principle Calculations(Elsevier Science Sa, 2021) Isik, M.; Surucu, G.; Gencer, A.; Gasanly, N. M.Bi12XO20 (X: Si, Ge, Ti) ternary semiconducting compounds are known as sillenites and take a remarkable attention thanks to their attractive photorefractive properties. The present paper reports electronic, optical and thermodynamic characteristics of Bi12SiO20 by means of density functional theory (DFT) calculations. The crystalline structure of the compound was revealed as cubic with lattice constant of 10.135 angstrom. XRD pattern obtained from DFT calculations were compared with experimental data and there is a good consistency between them. The electronic band structure and density of state plots were presented in detail. The band gap energy of the compound was determined from electronic band structure and spectra of optical constants. The spectral dependencies of real and imaginary components of dielectric function, refractive index, extinction coefficient, absorption coefficient and loss function were plotted in the 0-12 eV spectral range. The revealed structural, electronic and optical characteristics were discussed taking into account the previously reported theoretical and experimental studies on the Bi12SiO20 sillenite.Article Citation - WoS: 8Citation - Scopus: 9Experimental and Theoretical Investigation of the Mechanical Characteristics of Sillenite Compound: Bi12geo20<(Elsevier Science Sa, 2021) Surucu, Gokhan; Isik, Mehmet; Gencer, Aysenur; Gasanly, NizamiThe present study reports the mechanical and elastic characteristics of Bi12GeO20 (BGO) compound by experimental nanoindentation measurements and density functional theory (DFT) calculations. X-ray diffraction pattern of BGO was plotted and revealed diffraction peaks were associated with Miller indices of cubic crystalline structure with lattice constant of a = 10.304 angstrom. Two- and three-dimensional representations of Young's modulus, linear compressibility, shear modulus and Poisson's ratio were presented according to DFT calculations. The calculated elastic constants pointed out the mechanically stable and anisotropic behavior of the BGO. The hardness and Young's modulus ranges of the BGO calculated from DFT studies were found as 3.7-6.3 GPa and 61.7-98.9 GPa, respectively. Hardness and Young's modulus of BGO single crystal were also obtained by analyzing force-dependent nanoindentation experimental data. It was observed that hardness and Young's modulus decrease with increase of load in the low applied loads and then reaches saturation in the high applied loads. This behavior is known as indentation size effect. True hardness value was determined from proportional specimen resistance model as 4.1 GPa. The force independent region presented the Young's modulus as 114 GPa. (C) 2021 Elsevier B.V. All rights reserved.

