6 results
Search Results
Now showing 1 - 6 of 6
Article Citation - WoS: 5Citation - Scopus: 5Low-Temperature Thermoluminescence in Layered Structured Ga0.75in0.25< Single Crystals(Elsevier Science Sa, 2012) Isik, M.; Bulur, E.; Gasanly, N. M.Defect centers in Ga0.75In0.25Se single crystals have been studied performing the thermoluminescence measurements in the temperature range of 10-300 K. The observed glow curves were analyzed using curve fitting, initial rise, and different heating rate methods to determine the activation energies of the defect centers. Thermal cleaning process has been applied to decompose the overlapped curves. Four defect centers with activation energies of 9, 45,54 and 60 meV have been found as a result of the analysis. The capture cross sections and attempt-to-escape frequencies of the defect centers were also found using the curve fitting method under the light of theoretical predictions. The first order kinetics for the observed glow curve was revealed from the consistency between the theoretical predictions for slow retrapping and experimental results. Another indication of negligible retrapping was the independency of peak position from concentration of carriers trapped in defect levels. (C) 2012 Elsevier B.V. All rights reserved.Article Citation - WoS: 8Citation - Scopus: 9Electronic, Optical and Thermodynamic Characteristics of Bi12sio20 Sillenite: First Principle Calculations(Elsevier Science Sa, 2021) Isik, M.; Surucu, G.; Gencer, A.; Gasanly, N. M.Bi12XO20 (X: Si, Ge, Ti) ternary semiconducting compounds are known as sillenites and take a remarkable attention thanks to their attractive photorefractive properties. The present paper reports electronic, optical and thermodynamic characteristics of Bi12SiO20 by means of density functional theory (DFT) calculations. The crystalline structure of the compound was revealed as cubic with lattice constant of 10.135 angstrom. XRD pattern obtained from DFT calculations were compared with experimental data and there is a good consistency between them. The electronic band structure and density of state plots were presented in detail. The band gap energy of the compound was determined from electronic band structure and spectra of optical constants. The spectral dependencies of real and imaginary components of dielectric function, refractive index, extinction coefficient, absorption coefficient and loss function were plotted in the 0-12 eV spectral range. The revealed structural, electronic and optical characteristics were discussed taking into account the previously reported theoretical and experimental studies on the Bi12SiO20 sillenite.Article Citation - WoS: 28Citation - Scopus: 30Composition-tuned band gap energy and refractive index in GaSxSe1-x layered mixed crystals(Elsevier Science Sa, 2017) Isik, Mehmet; Gasanly, NizamiTransmission and reflection measurements on GaSxSe1-x mixed crystals (0 <= x <= 1) were carried out in the 400-1000 nm spectral range. Band gap energies of the studied crystals were obtained using the derivative spectra of transmittance and reflectance. The compositional dependence of band gap energy revealed that as sulfur (selenium) composition is increased (decreased) in the mixed crystals, band gap energy increases quadratically from 1.99 eV (GaSe) to 2.55 eV (GaS). Spectral dependencies of refractive indices of the mixed crystals were plotted using the reflectance spectra. It was observed that refractive index decreases nearly in a linear behavior with increasing band gap energy for GaSxSe1-x mixed crystals. Moreover, the composition ratio of the mixed crystals was obtained from the energy dispersive spectroscopy measurements. The atomic compositions of the studied crystals are well-matched with composition x increasing from 0 to 1 by intervals of 0.25. (C) 2016 Elsevier B.V. All rights reserved.Article Citation - WoS: 7Citation - Scopus: 7Photoconductivity Kinetics in Agin5s8< Thin Films(Elsevier Science Sa, 2010) Qasrawi, A. F.; Kayed, T. S.; Ercan, IsmailThe temperature (T) and illumination intensity (F) effects on the photoconductivity of as grown and heat-treated AgIn5S8 thin films has been investigated. At fixed illumination intensity, in the temperature region of 40-300K, the photocurrent (I-ph) of the films was observed to decrease with decreasing temperature. The I-ph of the as grown sample behaved abnormally in the temperature region of 170-180K. At fixed temperature and variable illumination intensity, the photocurrent of the as grown sample exhibited linear, sublinear and supralinear recombination mechanisms at 300 K and in the regions of 160-260K and 25-130 K. respectively. This behavior is attributed to the exchange of role between the linear recombination at the surface near room temperature and trapping centers in the film which become dominant as temperature decreases. Annealing the sample at 350 K for 1 h improved the characteristic curves of I-ph. The abnormality disappeared and the I-ph - T dependence is systematic. The data analysis of which revealed two recombination centers located at 66 and 16 meV. In addition, the sublinear recombination mechanism disappeared and the heat-treated films exhibited supralinear recombination in most of the studied temperature range. (C) 2010 Elsevier B.V. All rights reserved.Article Citation - WoS: 7Citation - Scopus: 7Interband Critical Points in Tlgax< Layered Mixed Crystals (0 ≤ x ≤ 1)(Elsevier Science Sa, 2013) Isik, M.; Işık, Mehmet; Gasanly, N. M.; Işık, Mehmet; Department of Electrical & Electronics Engineering; Department of Electrical & Electronics EngineeringThe layered semiconducting TlGaxIn1-xS2 mixed crystals (0 <= x <= 1) were studied by spectroscopic ellipsometry measurements in the 1.2-6.2 eV spectral range at room temperature. The spectral dependence of the components of the complex dielectric function, refractive index and extinction coefficient were revealed using an optical model. The interband transition energies in the studied samples were found from the analysis of the second-energy derivative spectra of the complex dielectric function. The variation of the obtained energies with composition were plotted to see the effect of the substitution of indium with gallium. Moreover, a simple diagram showing the revealed transitions in the available electronic band structure was given for TlGaS2 single crystals. (C) 2013 Elsevier B.V. All rightsArticle Citation - WoS: 2Citation - Scopus: 2Optical constants and interband transitions of anisotropic layered structured Tl2GaInS4 crystals by spectroscopic ellipsometry(Elsevier Science Sa, 2013) Isik, M.; Gasanly, N. M.; Turan, R.Spectroscopic ellipsometry measurements were carried out on Tl2GaInS4 layered crystals for orientations of electric field vector, parallel (E//c*) and perpendicular (E perpendicular to c*) to optical axis c*. The measurements were performed in the 1.2-6.2 eV spectral range at room temperature. The real and imaginary components of the pseudodielectric function, pseudorefractive index and pseudoextinction coefficient were calculated from the analysis of ellipsometric data. The energies of interband transitions (critical points) have been found from the least-square fitting of the second derivative spectra of the pseudodielectric function. The results indicated five each interband transition structures for E//c* and E perpendicular to c* configurations. The obtained critical point energies were assigned tentatively to interband transitions using the available electronic energy band structure given in literature. (C) 2012 Elsevier B.V. All rights reserved.

