Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 8
    Citation - Scopus: 9
    Experimental and Theoretical Investigation of the Mechanical Characteristics of Sillenite Compound: Bi12geo20<
    (Elsevier Science Sa, 2021) Surucu, Gokhan; Isik, Mehmet; Gencer, Aysenur; Gasanly, Nizami
    The present study reports the mechanical and elastic characteristics of Bi12GeO20 (BGO) compound by experimental nanoindentation measurements and density functional theory (DFT) calculations. X-ray diffraction pattern of BGO was plotted and revealed diffraction peaks were associated with Miller indices of cubic crystalline structure with lattice constant of a = 10.304 angstrom. Two- and three-dimensional representations of Young's modulus, linear compressibility, shear modulus and Poisson's ratio were presented according to DFT calculations. The calculated elastic constants pointed out the mechanically stable and anisotropic behavior of the BGO. The hardness and Young's modulus ranges of the BGO calculated from DFT studies were found as 3.7-6.3 GPa and 61.7-98.9 GPa, respectively. Hardness and Young's modulus of BGO single crystal were also obtained by analyzing force-dependent nanoindentation experimental data. It was observed that hardness and Young's modulus decrease with increase of load in the low applied loads and then reaches saturation in the high applied loads. This behavior is known as indentation size effect. True hardness value was determined from proportional specimen resistance model as 4.1 GPa. The force independent region presented the Young's modulus as 114 GPa. (C) 2021 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 10
    Characterization of Properties of Vanadium, Boron and Strontium Addition on Hpdc of A360 Alloy
    (Elsevier Science Sa, 2021) Gursoy, Ozen; Colak, Murat; Tur, Kazim; Dispinar, Derya
    The demand for lighter weight decreased thickness and higher strength has become the focal point in the automotive industry. In order to meet such requirements, the addition of several alloying elements has been started to be investigated. In this work, the additions of V, B, and Sr on feedability and tensile properties of A360 has been studied. A mold design that consisted of test bars has been produced. Initially, a simulation was carried out to optimize the runners, filling, and solidification parameters. Following the tests, it was found that V addition revealed the highest UTS but low elongation at fracture, while B addition exhibited visa verse. On the other hand, impact energy was higher with B additions.
  • Article
    Citation - WoS: 39
    Citation - Scopus: 42
    Effect of Post Fabrication Aging Treatment on the Microstructure, Crystallographic Texture and Elevated Temperature Mechanical Properties of In718 Alloy Fabricated by Selective Laser Melting
    (Elsevier Science Sa, 2022) Ozer, Seren; Bilgin, Guney Mert; Davut, Kemal; Esen, Ziya; Dericioglu, Arcan F.
    The effect of building direction and post fabrication aging treatment on the microstructure, crystallographic texture and high temperature mechanical properties of Inconel 718 (IN718) alloy fabricated by selective laser melting (SLM) method was investigated. After aging, arc-shaped structures seen in as-fabricated samples dis-appeared and converted into a mixture of columnar and equiaxed grains. Nano-sized gamma '' and/or gamma' precipitates were formed upon aging; however, MC type carbides and Laves phase encountered in as-fabricated samples were not dissolved completely after aging. Moreover, aging did not alter the texture ((001)//building direction (BD)) of as-fabricated samples. Mechanical properties of the alloys under tension were influenced by the build direction, aging time and test temperature. As-fabricated samples produced in vertical direction exhibited higher room temperature strengths with lower ductility due to orientation of overlapped prior melt pools. Room temperature tensile test results revealed that peak aging caused a significant improvement in ultimate tensile strength (UTS), from 1066.5 MPa and 998.4 MPa to 1408.5 MPa and 1330.4 MPa whereas elongation values decreased from 27.5% and 32.2% to 19.6% and 23.7% in vertically and horizontally built samples, respectively. Peak-aged samples (aged at 700 degrees C for 8 h) tested at 600 degrees C displayed serrated regions in their stress-strain curves due to dynamic strain aging (DSA). Although strength values of the samples displayed an expected decrease by temperature, ductility of the samples reduced to minimum at temperatures around 700-800 degrees C, which was attributed to intermediate temperature embrittlement.