Search Results

Now showing 1 - 3 of 3
  • Article
    Citation - WoS: 16
    Citation - Scopus: 16
    A New Carborane Based Polymeric Electrochrome
    (Elsevier Science Sa, 2013) Cansu-Ergun, Emine Gul; Cihaner, Atilla
    New electrochromic copolymers of 3,4-ethylenedioxythiophene and di(m-carboranyl thiophene) were synthesized, characterized and their electro-optical properties were reported. The copolymers were successfully prepared from various monomer feed ratios using electrochemical polymerization technique. It can be conjectured that electrochemical and optical properties of the copolymers can be adjusted by playing with monomer feed ratios. For example, the maximum wavelength of poly(3,4-ethylenedioxythiophene) at 600 nm can be shifted to lower values (i.e., 522 nm) by increasing the ratio of di(m-carboranyl thiophene) in the monomer mixture. The copolymer films also have low band gap values between 1.69 and 1.82 eV and showed electrochromic properties; purple when neutralized and transparent sky blue when oxidized. Also, during redox switching the films exhibited a percent transmittance change between 32% and 46% with a switching time between 1.0 s and 1.3 s. (C) 2013 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    New electrochromic copolymers based on spiro bipropylenedioxythiophene and 3,4-ethylenedioxythiophene
    (Elsevier Science Sa, 2014) Pekel, Lutfiye Canan; Karabay, Bads; Cihaner, Atilla
    Two alkylenedioxythiophene derivatives, Spiro bipropylenedioxythiophene (Spiro-BiProDOT) and 3,4-ethylenedioxythiophene (EDOT), were integrated electrochemically in order to attain low band gap electrochromic copolymers. EDOT has a functionality of two, which causes a linear polymer, whereas Spiro-BiProDOT has a functionality of four and its polymerization results in a network polymer. Therefore, by playing the monomer feed ratio, the crosslink degree can be adjusted for the copolymers obtained electrochemically from EDOT and Spiro-BiProDOT monomers in an electrolyte solution of 0.1 M tetrabutyl ammonium hexafluorophosphate dissolved in dichloromethane. It was found that copolymers showed different electrochemical and optical properties at their various redox states when compared to their homopolymers. For example, they could be switched from dark blue in the neutral state to reddish blue at intermediate state and finally to transparent blue in the oxidized state with 45-51% of the transmittance change at 575-595 nm. pi-pi* transition bands of the copolymers can be shifted to higher wavelengths when compared to poly(Spiro-BiProDOT) by increasing the amount of the EDOT units in the polymer backbone. They have low band gaps in the range of 1.65 and 1.73 eV. (C) 2014 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 10
    Effect of Ring Size on Benzimidazole Unit on Electro-Optical Properties of Donor-Acceptor Type Monomers and Their Polymers
    (Elsevier Science Sa, 2016) Al-Ogaidi, Saad; Karabay, Bads; Karabay, Lutfiye Canan; Cihaner, Atilla
    A new series of fluorescent donor-acceptor-donor (D-A-D) type monomers based on benzimidazole acceptor unit bearing various cycloalkane appendages, called 4,7-di-2,3-dihydrothieno[3,4-b] [1,4]dioxin-5-ylspiro[benzimidazole-2,1'-cyclopentane] (E5E), 4,7-di-2,3-dihydrothieno[3,4-b] [1,4]dioxin-5-ylspiro[benzimidazole-2,1'-cyclohexane] (E6E) and 4,7-di-2-thienylspiro[benzimidazole-2,1'-cyclohexane] (T6T), were synthesized and polymerized via potentiostatic and potentiodynamic methods. The effect of ring size on benzimidazole unit and the kind of donor moiety in D-A-D system on the electrochemical and optical properties have been studied systematically. The optical studies showed that the ring size of the benzimidazole unit has no effect on the absorbance and fluorescence properties, whereas the oxidation potential of the E5E, E6E and T6T monomers varied with respect to both the ring size and the kind of donor unit: 0.89 V, 0.83 V and 122 V vs Ag/AgCl, respectively. All polymers have ambipolar (p- and n-type doping) and electrochromic properties. While the polymer films PE5E and PE6E are green at neutral state and transparent at oxidized state, the polymer PT6T has no appreciable color change between its neutral and oxidized states. The polymers PE5E and PE6E bearing 3,4-ethylenedioxythiophene unit as donor units exhibited lower band gap values (1.21 eV and 1.18 eV, respectively) than the polymer PT6T (1.53 eV). When compared to PT6T, PE5E and PE6E polymers are more stable under ambient condition. While PE5E retained 76% of its electroactivity after 4000 cycles, PE6E has 65% of its electroactivity after 2000 cycles. (C) 2016 Elsevier B.V. All rights reserved.