Effect of ring size on benzimidazole unit on electro-optical properties of donor-acceptor-donor type monomers and their polymers

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Sa

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Chemical Engineering
(2010)
Established in 2010, and aiming to train the students with the capacity to meet the demands of the 21st Century, the Chemical Engineering Department provides a sound chemistry background through intense coursework and laboratory practices, along with fundamental courses such as Physics and Mathematics within the freshman and sophomore years, following preparatory English courses.In the final two years of the program, engineering courses are offered with laboratory practice and state-of-the-art simulation programs, combining theory with practice.

Journal Issue

Abstract

A new series of fluorescent donor-acceptor-donor (D-A-D) type monomers based on benzimidazole acceptor unit bearing various cycloalkane appendages, called 4,7-di-2,3-dihydrothieno[3,4-b] [1,4]dioxin-5-ylspiro[benzimidazole-2,1'-cyclopentane] (E5E), 4,7-di-2,3-dihydrothieno[3,4-b] [1,4]dioxin-5-ylspiro[benzimidazole-2,1'-cyclohexane] (E6E) and 4,7-di-2-thienylspiro[benzimidazole-2,1'-cyclohexane] (T6T), were synthesized and polymerized via potentiostatic and potentiodynamic methods. The effect of ring size on benzimidazole unit and the kind of donor moiety in D-A-D system on the electrochemical and optical properties have been studied systematically. The optical studies showed that the ring size of the benzimidazole unit has no effect on the absorbance and fluorescence properties, whereas the oxidation potential of the E5E, E6E and T6T monomers varied with respect to both the ring size and the kind of donor unit: 0.89 V, 0.83 V and 122 V vs Ag/AgCl, respectively. All polymers have ambipolar (p- and n-type doping) and electrochromic properties. While the polymer films PE5E and PE6E are green at neutral state and transparent at oxidized state, the polymer PT6T has no appreciable color change between its neutral and oxidized states. The polymers PE5E and PE6E bearing 3,4-ethylenedioxythiophene unit as donor units exhibited lower band gap values (1.21 eV and 1.18 eV, respectively) than the polymer PT6T (1.53 eV). When compared to PT6T, PE5E and PE6E polymers are more stable under ambient condition. While PE5E retained 76% of its electroactivity after 4000 cycles, PE6E has 65% of its electroactivity after 2000 cycles. (C) 2016 Elsevier B.V. All rights reserved.

Description

Keywords

Electropolymerization, Electrochromism, D-A-D system, Benzimidazole, EDOT, Thiophene

Turkish CoHE Thesis Center URL

Fields of Science

Citation

8

WoS Q

Q1

Scopus Q

Q2

Source

Volume

768

Issue

Start Page

1

End Page

10

Collections