44 results
Search Results
Now showing 1 - 10 of 44
Article Citation - WoS: 16Citation - Scopus: 18Contact-Free Measurement of Respiratory Rate Using Infrared and Vibration Sensors(Elsevier Science Bv, 2015) Erden, Fatih; Alkar, Ali Ziya; Cetin, Ahmet EnisRespiratory rate is an essential parameter in many practical applications such as apnea detection, patient monitoring, and elderly people monitoring. In this paper, we describe a novel method and a contact-free multi-modal system which is capable of detecting human breathing activity. The multimodal system, which uses both differential pyro-electric infrared (PIR) and vibration sensors, can also estimate the respiratory rate. Vibration sensors pick up small vibrations due to the breathing activity. Similarly, PIR sensors pick up the thoracic movements. Sensor signals are sampled using a microprocessor board and analyzed on a laptop computer. Sensor signals are processed using wavelet analysis and empirical mode decomposition (EMD). Since breathing is almost periodic, a new multi-modal average magnitude difference function (AMDF) is used to detect the periodicity and the period in the processed signals. By fusing the data of two different types of sensors we achieve a more robust and reliable contact-free human breathing activity detection system compared to systems using only one specific type of sensors. (C) 2015 Elsevier B.V. All rights reserved.Article Citation - WoS: 2Citation - Scopus: 2Properties of Tl4se3< Single Crystals and Characterization of Ag/Tl4< Schottky Barrier Diodes(Elsevier Science Bv, 2010) Qasrawi, A. F.; Gasanly, N. M.The main physical properties of Tl4Se3S single crystals were investigated for the first time. Particularly, the crystal data, Debye temperature, dark electrical resistivity and Hall effect in addition to the temperature dependent current-voltage characteristics and photosensitivity of the Ag/Tl4Se3S Schottky barrier diode were studied. The X-ray diffraction patterns have revealed that the crystal exhibited a single phase of tetragonal structure belonging to the D-4h(18) - 14mcm space group. A Debye temperature of 100 K was calculated using the results of the X-ray diffraction analysis. The dark electrical resistivity and Hall-effect measurements indicated that the samples exhibits p-type conduction with an electrical resistivity, carrier concentration and Hall mobility of 6.20 x 10(3) Omega cm, 1.16 x 10(12) cm(-3) and 873 cm(2) V-1 s(-1), respectively. The crystals were observed to have Schottky diode properties. The Ag/Tl4Se3S Schottky barrier device bias voltage was observed to depend on the crystal direction and on temperature. It was found that the calculated energy barrier height decreased and the diode ideality factor increased with temperature decreasing. The photosensitivity-light intensity dependence of this device was found to be linear reflecting the ability of using it in optoelectronics. (C) 2009 Elsevier B.V. All rights reserved.Article Citation - WoS: 62Citation - Scopus: 70Kinetic Studies on the Multi-Enzyme Solution Produced Via Solid State Fermentation of Waste Bread by aspergillus Awamori(Elsevier Science Bv, 2013) Melikoglu, Mehmet; Lin, Carol Sze Ki; Webb, ColinThe aim of this study was kinetic analysis of the multi-enzyme solution produced from waste bread via solid state fermentation by Aspergillus awamori. It was found that at normal temperature for hydrolysis reactions, 60 degrees C, the activation energies for denaturation of A. awamori glucoamylase, 176.2 kJ/mol, and protease, 149.9 kJ/mol, are much higher than those for catalysis of bread starch, 46.3 kJ/mol, and protein, 36.8 kJ/mol. Kinetic studies showed that glucoamylase and protease in the multi-enzyme solution should have at least two conformations under the two temperature ranges: 30-55 degrees C and 60-70 degrees C. Thermodynamic analysis showed that, deactivation of glucoamylase and protease in the multi-enzyme solution can be reversible between 30 degrees C and 55 degrees C, since Delta S is negative and Delta H is positive. On the other hand, for glucoamylase and protease, both Delta S and Delta H are positive between 60 degrees C and 70 degrees C. This means that the deactivation of both enzymes in the multi-enzyme solution is spontaneous in this temperature range. It was also found that the glucoamylase produced in the solid state fermentation of waste bread is more thermally stable than the protease in the mixture. Consequently, the protease had little or no effect on the stability of the glucoamylase. Furthermore, the half-life of the glucoamylase produced from waste bread pieces was much higher than that produced from wheat flour. This is an important finding because the mode of production, via solid state fermentation, appears to have increased the thermostability of the enzyme significantly. (C) 2013 Elsevier B.V. All rights reserved.Article Citation - WoS: 28Citation - Scopus: 29Functionalized Polysulfide Copolymers With 4-Vinylpyridine Via Inverse Vulcanization(Elsevier Science Bv, 2019) Berk, Hasan; Balci, Burcu; Ertan, Salih; Kaya, Murat; Cihaner, AtillaA new series of functional polysulfide copolymers called poly(sulfur-random-4-vinylpyridine) (poly(S-r-4VP)) was synthesized via inverse vulcanization technique by ring opening polymerization of elemental sulfur in the presence of 4-vinylpyridine (4VP). The corresponding copolymers can be post functionalized by using amine group in 4VP unit to get polymers bearing various properties. Elemental sulfur was heated up to 160 degrees C and 4VP was added slowly to a clear yellowish orange colored liquid at this temperature. The reaction mixture was vitrified to form a reddish-brown polymeric material at 180 degrees C in 1 h. The products were characterized by using FTIR, NMR, and Raman spectroscopic techniques. Poly(S-r-4VP) copolymers are soluble in common solvents like dichloromethane, chloroform and tetrahydrofuran. Weight-average molecular weights of poly(S-r-4VP) copolymers with different wt% 4VP were measured by using gel permeation chromatography technique. The polysulfide copolymers with different wt% 4VP have high weight-average molecular weights with polydispersity indeces (PDI) in a range from 1.88 to 4.06 measured by gel permeation chromatography. Post functionalization of the copolymer with 50 wt% 4VP as an example was performed successfully by using alkyl bromide to get N-alkyl quaternized 4VP in polymer backbone.Article Citation - WoS: 11Citation - Scopus: 12Effect of Au Nanosandwiching on the Structural, Optical and Dielectric Properties of the as Grown and Annealed Inse Thin Films(Elsevier Science Bv, 2017) Omareya, Olfat A.; Qasrawi, A. F.; Al Garni, S. E.In the current work, the structural, optical and dielectric properties of the InSe/Au/InSe nanosandwiched structures are investigated by means of X-ray diffraction and UV-visible light spectrophotometry techniques. The insertion of a 20 and 100 nm thick Au metal slabs between two InSe layers did not alter the amorphous nature of the as grown InSe films but decreased the energy band gap and the free carrier density. It also increased; the absorption ratio and the values of dielectric constant by similar to 3 times. The insertion of 100 nm Au layers as a nanosandwich enhanced the drift mobility (31.3 cm(2)/V s) and plasmon frequency (1.53 GHz) of the InSe films. On the other hand, upon annealing, a metal induced crystallization process is observed for the InSe/Au (100 nm)/InSe sandwiches. Particularly, while the samples sandwiched with a layer of 20 nm thickness hardly revealed hexagonal gamma -In2Se3 when annealed at 300 degrees C, those sandwiched with 100 nm Au slab, displayed well crystalline phase of hexagonal gamma -In2Se3 at annealing temperature of 200 degrees C. The further annealing at 300 degrees C, forced the appearing of the orthorhombic In4Se3 phase. Optically, the annealing of the InSe/Au(100 nm)/InSe at 200 degrees C improved the absorption ratio by similar to 9 times and decreased the energy band gap. The nanosandwiching technique of InSe seems to be promising for the engineering of the optical properties of the InSe photovoltaic material.Article Citation - WoS: 14Citation - Scopus: 15Global asymptotic stability of 2-D state-space digital filters with saturation arithmetic: Modified approach(Elsevier Science Bv, 2008) Singh, VimalA criterion for the global asymptotic stability of 2-D state-space digital filters described by the Roesser model employing state saturation arithmetic is presented. The criterion is a modified form of a recently reported criterion. An example shows the effectiveness of the modified criterion. (C) 2007 Elsevier B.V. All rights reserved.Article Citation - WoS: 4Citation - Scopus: 4Band Offsets and Optical Conduction in the Cdse/Gase Interface(Elsevier Science Bv, 2016) Kayed, T. S.; Qasrawi, A. F.; Elsayed, Khaled A.In this work, the design and characterization of CdSe/GaSe heterojunction is considered. The CdSe/GaSe thin film interface was prepared by the physical vapor deposition technique. Systematic structural and optical analysis were performed to explore the crystalline nature, the optical band gaps, the conduction and valence band offsets, the dielectric spectra, and the frequency dependent optical conductivity at terahertz frequencies. The X-ray diffraction analysis revealed a polycrystalline interface that is mostly dominated by the hexagonal CdSe oriented in the (002) direction. It was also found that the CdSe/GaSe interface exhibits conduction and valence band offsets of 1.35 and 1.23/1.14 eV, respectively. The dielectric spectra displayed two dielectric resonance peaks at 530 and 445 THz. Moreover, the computational fittings of the optical conductivity of the interface revealed a free carrier scattering time of 0.41 (fs) for a free carrier density of 7.0 x 10(18) (cm(-3)). The field effect mobility for the CdSe/GaSe interface was found to be 5.22 (cm(2)/Vs). The remarkable features of this device having large band offsets and qualitative optical conduction dominated by a scattering time in the order of femtoseconds in addition to the dielectric property nominate the device to be used in optoelectronic technology. (C) 2016 Elsevier B.V. All rights reserved.Article Citation - WoS: 10Citation - Scopus: 10Fabrication and Characterization of Yb/Moo3< Devices(Elsevier Science Bv, 2019) Al Garni, S. E.; Qasrawi, A. F.In this study we have explored some of the properties of Yb/MoO3/(C, Yb) thin films as a multifunctional optoelectronic device. While the MoO3 films which are deposited onto glass substrate are found to be of amorphous nature, the Yb metal induced the growth of orthorhombic phase of MoO3. The films are high transparent and exhibit energy band gap value of 3.0 eV which make it sensitive to light signals in the near ultraviolet range of light. In addition, the frequency dependent capacitance-voltage characteristics of Yb/MoO3/(C,Yb) structure display pronounced accumulation, depletion and inversion regions that nominate it for use as tunable metal-oxide-semiconductor MOS device. The physical parameters including the built in voltage, barrier height, flat band and threshold voltages of the MOS capacitors are also determined. Furthermore, the current-voltage characteristics displayed high rectification ratio that could reach 1.26 x 10(4) at biasing voltage of 0.5 V nominating the Yb/MoO3/C device for use as electronic switches. On the other hand, the impedance spectroscopy analysis in the frequency domain of 0.01-1.80 GHz, have shown that the Yb/MoO3/Yb structures are more appropriate for microwave applications than Yb/MoO3/C device. The microwave cutoff frequency for the Yb sandwiched MoO3 exceeds 140 GHz. The return loss for the Yb/MoO3/Yb reaches 26 dB at 1.8 GHz. These values are attractive as they suit microwave low/high pass band fillers.Article Citation - WoS: 6Citation - Scopus: 6Gold and Ytterbium Interfacing Effects on the Properties of the Cdse/Yb Nanosandwiched Structures(Elsevier Science Bv, 2018) Alharbi, S. R.; Qasrawi, A. F.Owing to the performance of the CdSe as an optoelectronic material used for the production of quantum dots, photosensors and wave traps we here, in this article, report the enhancements in structural and electrical properties that arises from the nanosandwiching of a 40 nm thick Yb film between two films of CdSe (CYbC-40). The CdSe films which were deposited onto glass, Yb and Au substrates are characterized by X-ray diffraction, temperature dependent electrical conductivity and impedance spectroscopy measurements in the frequency range of 10-1800 MHz. The analysis of the XRD patterns have shown that the glass/CdSe/Yb/CdSe films exhibit larger grain size and lower strain, defect density and lower stacking faults compared to the not sandwiched CdSe. In addition, it was observed that the Yb shifts the donor states of the n-type CdSe from 0.44 to 0.29 eV leading to a modification in the built in voltage of the material. On the other hand, the design of the energy band diagram has shown the ability of the formation of the Au/CYbC-40/Yb as Schottky (SB) and the Au/CYbC-40/Au as back to back Schottky barriers (BBSB). While the SB device show low band pass filter characteristics, the BBSB device performed as band stop filters. The BBSB device exhibited negative capacitance effects with filtering features that reveal a return loss of 42 dB at similar to 1440 MHz.Article Citation - WoS: 18Citation - Scopus: 18Fabrication of Al/Mgo and C/Mgo Tunneling Barriers for Tunable Negative Resistance and Negative Capacitance Applications(Elsevier Science Bv, 2013) Qasrawi, A. F.In this work, the design and characterization of magnesium oxide based tunneling diodes which are produced on Al and InSe films as rectifying substrates are investigated. It was found that when Al thin films are used, the device exhibit tunneling diode behavior of sharp valley at 0.15 V and peak to valley current ratio (PVCR) of 11.4. In addition, the capacitance spectra of the Al/MgO/C device show a resonance peak of negative capacitance (NC) values at 44.7 MHz. The capacitance and resistance-voltage characteristics handled at an ac signal frequency of 100 MHz reflected a build in voltage (V-bi) of 1.29 V and a negative resistance (NR) effect above 2.05 V. This device quality factor (Q)-voltage response is similar to 10(4). When the Al substrate is replaced by InSe thin film, the tunneling diode valley appeared at 1.1 V. In addition, the PVCR, NR range, NC resonance peak, Q and lib; are found to be 135, 0.94-2.24 and 39.0 MHz, similar to 10(5) and 1.34 V, respectively. Due to the wide differential negative resistance and capacitance voltage ranges and due to the response of the C/MgO/InSe/C device at 1.0 GHz, these devices appear to be suitable for applications as frequency mixers, amplifiers, and monostable-bistable circuit elements (MOBILE). (c) 2013 Elsevier B.V. All rights reserved.

