4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 6Citation - Scopus: 6Gold and Ytterbium Interfacing Effects on the Properties of the Cdse/Yb Nanosandwiched Structures(Elsevier Science Bv, 2018) Alharbi, S. R.; Qasrawi, A. F.Owing to the performance of the CdSe as an optoelectronic material used for the production of quantum dots, photosensors and wave traps we here, in this article, report the enhancements in structural and electrical properties that arises from the nanosandwiching of a 40 nm thick Yb film between two films of CdSe (CYbC-40). The CdSe films which were deposited onto glass, Yb and Au substrates are characterized by X-ray diffraction, temperature dependent electrical conductivity and impedance spectroscopy measurements in the frequency range of 10-1800 MHz. The analysis of the XRD patterns have shown that the glass/CdSe/Yb/CdSe films exhibit larger grain size and lower strain, defect density and lower stacking faults compared to the not sandwiched CdSe. In addition, it was observed that the Yb shifts the donor states of the n-type CdSe from 0.44 to 0.29 eV leading to a modification in the built in voltage of the material. On the other hand, the design of the energy band diagram has shown the ability of the formation of the Au/CYbC-40/Yb as Schottky (SB) and the Au/CYbC-40/Au as back to back Schottky barriers (BBSB). While the SB device show low band pass filter characteristics, the BBSB device performed as band stop filters. The BBSB device exhibited negative capacitance effects with filtering features that reveal a return loss of 42 dB at similar to 1440 MHz.Article Citation - WoS: 1Citation - Scopus: 1Analysis of Glow Curve of Gas0.5se0.5< Single Crystals(Elsevier Science Bv, 2015) Isik, Mehmet; Delice, Serdar; Gasanly, NizamiCharacterization of shallow trapping centers in GaS0.5Se0.5 crystals grown by a Bridgman method was carried out in the present work using thermoluminescence (TL) measurements performed in the low temperature range of 10-300 K. The activation energies of the trapping centers were obtained under the light of results of various analysis methods. The presence of three trapping centers located at 6, 30 and 72 meV was revealed. The analysis of the experimental glow curve gave reasonable results under the model that assumes slow retrapping which states the order of kinetics as b=1. Heating rate dependence of the observed TL peaks was studied for the rates between 0.4 and 1.0 K/s. Distribution of the traps was also investigated using an experimental technique based on the thermal cleaning of centers giving emission at lower temperatures. The distributed levels with activation energies increasing from 6 to 136 meV were revealed by increasing the stopping temperature from 10 to 52 K. (C) 2015 Elsevier B.V. All rights reserved.Article Citation - WoS: 2Citation - Scopus: 2Trapping Center Parameters in In6s7< Crystals(Elsevier Science Bv, 2011) Isik, M.; Gasanly, N. M.Thermally stimulated current measurements were carried out on In6S7 single crystals in the temperature range of 10-225 K with a constant heating rate of 0.8 K/s. The study of trapping centers was accomplished by the measurements of current flowing along the c-axis of crystals. The analysis of the glow curve according to various methods, such as curve fitting, initial rise and peak shape methods, gives results in good agreement with each other and revealed two trapping centers in In6S7 with activation energies of 157 and 290 meV. Their capture cross sections have been determined as 7.5 x 10(-23) and 7.1 x 10(-20) cm(2),respectively. The good agreement between the experimental results and the theoretical predictions of the model that assumes slow retrapping has confirmed that retrapping is negligible in these centers. (C) 2011 Elsevier B.V. All rights reserved.Article Citation - WoS: 48Citation - Scopus: 48Gd-Doped Zno Nanoparticles: Synthesis, Structural and Thermoluminescence Properties(Elsevier Science Bv, 2019) Isik, M.; Gasanly, N. M.Structural and thermoluminescence (TL) properties of Gd-doped ZnO nanoparticles were investigated in the present study. TL glow curves recorded in the 10-300 K range presented three overlapped peaks around 56, 110 and 155 K for undoped ZnO nanoparticles. The Gd-doping to the ZnO nanoparticles resulted in shift of peak maximum temperatures to lower values and decrease of activation energies associated with the observed peaks. Activation energies of trapping centers were also reported. Taking into account the previously reported studies on defect characterization of ZnO compound, revealed centers were associated with interstitial defects. Structural characteristics of the synthesized nanoparticles were investigated by x-ray diffraction and scanning electron microscopy measurements.

