Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 19
    Citation - Scopus: 18
    Experimental and Numerical Analysis of a Helically-Coiled Solar Water Collector at Various Angular Placements
    (Elsevier France-editions Scientifiques Medicales Elsevier, 2023) Variyenli, Halil Ibrahim; Amini, Ali; Tuncer, Azim Dogus; Khanlari, Ataollah; Kolay, Sahin
    Solar water collectors are widely utilized for providing hot water to be used in different applications. In this work, a solar water collector with a helically coiled absorber has been designed, fabricated, and examined at different test conditions to specify its overall performance. One of the major goals of using a tube-type absorber is to upgrade the thermal efficiency of the collector by providing a perpendicular angle between the absorber and incident solar rays. Also, using a helically-coiled structure make it possible to increase the absorber surface in a relatively small volume in comparison to conventional solar water collectors. In the first step of this research, the designed helically-coiled solar collector has been simulated using a solar radiation model. In the next step, the manufactured helically-coiled solar collector has been experimentally tested at three different inclination angles and various water flow rates. According to the experimental results, mean thermal efficiencies of horizontal, vertical, and angular helically-coiled collectors were obtained in the ranges of 29.48-48.23%, 27.17-47.03%, and 32.50-52.71%, respectively. In addition, sustainability index values for horizontal, vertical and angular helically-coiled collectors were achieved between the ranges of 1.0041-1.0091, 1.0039-1.0087, and 1.0043-1.0102, respectively. Moreover, the maximum deviation between numerical and experimental findings was calculated as 14%.
  • Article
    Citation - WoS: 19
    Citation - Scopus: 21
    Gender Inequity in Thermal Sensation Based on Emotional Intensity for Participants in a Warm Mediterranean Climate Zone
    (Elsevier France-editions Scientifiques Medicales Elsevier, 2023) Ceter, Aydin Ege; Ozbey, Mehmet Furkan; Turhan, Cihan
    The deficiencies of the one of the most preferred conventional thermal comfort models, the Predicted Mean Vote/ Percentage of Predicted Dissatisfied (PMV/PPD) method have emerged over time since the model does not take psychological parameters such as personal traits, mood states and adaptation into account. Therefore, re-searchers have focused on Adaptive Thermal Comfort models that integrate human behaviours into the model for better prediction of thermal comfort. In addition to the influence of the behaviours of occupants, thermal comfort may be evaluated as a subjective term, thus, the effect of one of the psychological parameters, current mood state, on thermal sensation cannot be ignored for predictions. Although, the effect of current mood state on thermal sensation is a vital concept, the findings of the studies are not effective and comprehensive in the literature. For this reason, the aim of this study is to examine the relationship between current mood state and thermal sensation in gender difference aspect. Therefore, a series of experiments were conducted in a university study hall between August 16th, 2021 and August 1st, 2022. The current mood states of the participants were evaluated with the Profile of Mood States (POMS) questionnaire and the results were represented by a novel approach called Emotional Intensity Score (EIS). One tailed t-test was applied for investigating the relationship between the EIS and the thermal sensation. Findings of the research showed that a significant association exists between the EIS and thermal sensation for male participants while no relationship was found for female.