Experimental and Numerical Analysis of a Helically-Coiled Solar Water Collector at Various Angular Placements

Loading...
Thumbnail Image

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier France-editions Scientifiques Medicales Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Automotive Engineering
(2009)
Having started education in 2009, the Atılım university Department of Automotive Engineering offers an academic environment at international standards, with its education in English, a contemporary curriculum and ever-better and ever-developing laboratory opportunities. In addition to undergraduate degree education, the graduate program of multi-disciplinary mechanical engineering offers the opportunity for graduate and doctorate degree education automotive engineering. The Atılım University Automotive Engineering has been selected to be the best in Turkey in 2020 in the field of automotive engineering with studies in energy efficiency, motor performance, active/ passive automotive security and vehicle dynamics conducted in the already-existing laboratories of its own. Our graduates are employed at large-scale companies that operate in Turkey, such as Isuzu, Ford Otosan, Hattat, Honda, Hyundai, Karsan, Man, Mercedes-Benz, Otokar, Renault, Temsa, Tofaş, Toyota, Türk Traktör, Volkswagen (to start operation in 2020). In addition, our graduates have been hired at institutions such as Tübitak, Tai, Aselsan, FNSS, Ministry of National Defence, Tcdd etc. or at supplier industries in Turkey. Due to the recent evolution undergone by the automotive industry with the development of electric, hybrid and autonomous vehicle technologies, automotive engineering has gained popularity, and is becoming ever more exhilarating. In addition to combustion engine technologies, our students also gain expertise in these fields. The “Formula Student Car” contest organized since 2011 by the Society of Automotive Engineers (SAE) where our Department ranked third globally in 2016 is one of the top projects conducted by our department where we value hands-on training. Our curriculum, updated in 2020, focuses on computer calculation and simulation courses, as well as laboratory practice, catered to modern automotive technologies.

Journal Issue

Events

Abstract

Solar water collectors are widely utilized for providing hot water to be used in different applications. In this work, a solar water collector with a helically coiled absorber has been designed, fabricated, and examined at different test conditions to specify its overall performance. One of the major goals of using a tube-type absorber is to upgrade the thermal efficiency of the collector by providing a perpendicular angle between the absorber and incident solar rays. Also, using a helically-coiled structure make it possible to increase the absorber surface in a relatively small volume in comparison to conventional solar water collectors. In the first step of this research, the designed helically-coiled solar collector has been simulated using a solar radiation model. In the next step, the manufactured helically-coiled solar collector has been experimentally tested at three different inclination angles and various water flow rates. According to the experimental results, mean thermal efficiencies of horizontal, vertical, and angular helically-coiled collectors were obtained in the ranges of 29.48-48.23%, 27.17-47.03%, and 32.50-52.71%, respectively. In addition, sustainability index values for horizontal, vertical and angular helically-coiled collectors were achieved between the ranges of 1.0041-1.0091, 1.0039-1.0087, and 1.0043-1.0102, respectively. Moreover, the maximum deviation between numerical and experimental findings was calculated as 14%.

Description

Tuncer, Azim Doğuş/0000-0002-8098-6417;

Keywords

Solar water collector, Helically-coiled, Angular placement, Solar radiation model

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1

Source

Volume

188

Issue

Start Page

End Page

Collections