Search Results

Now showing 1 - 10 of 18
  • Article
    Citation - WoS: 5
    Citation - Scopus: 7
    Design of Novel Tellurium and Selenium Containing Semiconducting Polymers Using Quantum Mechanical Tools
    (Elsevier, 2017) Kaya, Birnur; Kayi, Hakan
    Structural, optical and electronic properties of the two novel donor-acceptor-donor type conjugated polymers based on 4,7-di(selenophen-2-yl)benzo[c][1,2,5]selenadiazole (SeSeSe) and 4,7-di(tellurophen-2-yl)benzo[c][1,2,5]telluradiazole (TeTeTe) are investigated by means of quantum chemical calculations utilizing conventional and long-range corrected hybrid functionals. The lowest energy structures of the SeSeSe and TeTeTe monomers and oligomers are revealed through conformational analysis, while their electronic properties are obtained from density functional theory (DFT) molecular orbital calculations and optical properties are obtained from the time dependent DFT (TD-DFT) calculations for UV-vis absorption spectra. Electronic band gaps that directly affect the semiconducting properties of these novel polymers are calculated by using linear regression analysis of DFT data, and also periodic boundary conditions calculations (PBC-DFT). Our results indicate that SeSeSe and TeTeTe polymers have considerably lower band gap values than that of their furan-, thiophene-, benzooxadiazole- and benzothiadiazole-based analogs. The novel SeSeSe and TeTeTe polymers with improved optical and electronic properties may have an important role in the near future, especially for the optoelectronic and photovoltaic applications. (C) 2016 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    Rescue: Wireless Power-Enabled Communication Architecture for Earthquake Rescue Operations
    (Elsevier, 2020) Badirkhanli, Orkhan; Akan, Ozgur B.; Ergul, Ozgur
    In a natural disaster such as an earthquake, it is vital to know the number of people trapped under the ruins. To address this problem, we propose RESCUE - wiREless backScattering CommUnication based disastEr recovery system. RESCUE is composed of special Radio-frequency identification (RFID) readers and sensors that are used to determine the total number of people under the ruins. Passive wireless sensor nodes are placed inside the building during construction and are equipped with a camera that is activated during an earthquake. After the earthquake, communication to the passive tags of sensors is achieved by wireless power transfer from a reader located outside the ruins. Tags harvest this energy and send the image data stored by the camera. We also design an antenna structure to maximize simultaneous wireless information and power transfer (SWIPT) for devices under ruins. We analyze the communication channel between reader and sensors and derive a channel model over ruins. Furthermore, we obtain the results of experimental study where we validate the derived channel model. Results show that RESCUE can collect the desired data in a relatively short time, and hence, is a promising disaster recovery system architecture. (C) 2019 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 22
    Citation - Scopus: 22
    Exploring Temperature-Dependent Bandgap and Urbach Energies in Cdte Thin Films for Optoelectronic Applications
    (Elsevier, 2024) Surucu, O.; Surucu, G.; Gasanly, N. M.; Parlak, M.; Isik, M.
    This study examines CdTe thin films deposited via RF magnetron sputtering, focusing on structural and optical properties. X-ray diffraction, Raman spectroscopy, and SEM assessed structural characteristics. Optical properties were analyzed through transmittance measurements from 10 to 300 K. Tauc plots and Varshni modeling revealed a temperature-dependent bandgap, increasing from 1.49 eV at room temperature to 1.57 eV at 10 K. Urbach energy rose from 82.7 to 93.7 meV with temperature. These results are essential for applications where temperature affects CdTe-based device performance.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 10
    A Theoretical Investigation of 4,7-Di(furan Donor-Acceptor Type Conjugated Polymer
    (Elsevier, 2015) Kayi, Hakan; Elkamel, Ali
    Quantum chemical calculations are performed using density functional theory (DFT) to investigate the HOMO-LUMO energy gap of the 4,7-di(furan-2-yl)benzo[c][1,2,5]selenadiazole-based (FSeF) donor-acceptor type conjugated polymer which ascertains the optoelectronic properties and plays a crucial role, especially in polymeric solar cell applications. In this paper, the most stable conformers of the FSeF monomer and its corresponding oligomers are investigated at the B3LYP/Def2TZV and B3LYP/LANL2DZ levels of theory, and their molecular structures are revealed. The band gap of the polymer is determined by linear-fitting and extrapolation of the DFT data. This gap is found to be 1.44 eV and 1.45 eV by the B3LYP/Def2TZV, and B3LYP/LANL2DZ with PCM calculations, respectively. Our theoretical findings related to the band gap of the FSeF polymer (PFSeF) are in good agreement with other experimental studies in the literature and, hence, the theoretical methods used in this study are promising for the design of similar donor-acceptor type novel conjugated polymers. (C) 2014 Elsevier B.V. All rights reserved.
  • Article
    Liftable Homeomorphisms of Cyclic and Rank Two Finite Abelian Branched Covers Over the Real Projective Plane
    (Elsevier, 2021) Atalan, Ferihe; Medetogullari, Elif; Ozan, Yildiray
    In this note, we investigate the property for regular branched finite abelian covers of the real projective plane, where each homeomorphism of the base (preserving the branch locus) lifts to a homeomorphism of the covering surface. (C) 2020 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Investigations of Ph-Dependent Dynamic Properties of Ompg-16sl, an Outer Membrane Protein G Mutant by Atr-Ftir Spectroscopy
    (Elsevier, 2022) Yilmaz, Irem; Korkmaz, Filiz
    In this paper, the dynamic properties of outer membrane protein G mutant (OmpG-16SL) are investigated with ATR-FTIR spectroscopy. While OmpG-WT has 14 beta-strands in its structure, the mutant is designed to have 16 beta-strands with the intention of creating an enlarged pore. Loop L6 is elongated by introducing six residues, two of which are negatively charged. The solvent accessibility of the OmpG-16SL mutant is compared with WT and a previously reported mutant OmpG-16S by tracking the H-1/H-2 exchange kinetics in acidic and neutral buffer conditions. The exchange kinetics and dynamics in the fast and slow exchange phases are separately investigated using the 2DCOS technique, which enables the tracking of the structural changes at each phase of the exchange process. The results suggest that the mutant OmpG-16SL is equally exposed to buffer in both acidic and neutral pH conditions. Additionally, the time range in the fast phase is very short - one-tenth of that for WT - and most of the exchange is completed in this phase. This fast exchange within minutes is also indicative of the presence of highly flexible and/or unstructured regions. In all, the fast exchange rates independent of the buffer pH justify the assumption that there is an altered interaction among the charged residues, which leads to a steadily-open pore. The role of the side-chain interactions within the pore and between the loops involving the loop L6 is also discussed.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 18
    Traps distribution in sol-gel synthesized ZnO nanoparticles
    (Elsevier, 2019) Delice, S.; Isik, M.; Gasanly, N. M.
    The distribution of shallow traps within the sol-gel synthesized ZnO nanoparticles was investigated using thermoluminescence (TL) experiments in the 10-300 K temperature range. TL measurements presented two overlapped peaks around 110 and 155 K. The experimental technique based on radiating the nanoparticles at different temperatures (T-exc.) between 60 and 125 K was carried out to understand the trap distribution characteristics of peaks. It was observed that peak maximum temperature shifted to higher values and activation energy (E-t) increased as irradiating temperature was increased. The E-t vs. T-exc. presented that ZnO nanoparticles have quasi-continuously distributed traps possessing activation energies increasing from 80 to 171 meV. (C) 2019 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 3
    Selective Adsorption of a Supramolecular Structure on Flat and Stepped Gold Surfaces
    (Elsevier, 2018) Pekoz, Rengin; Donadio, Davide
    Halogenated aromatic molecules assemble on surfaces forming both hydrogen and halogen bonds. Even though these systems have been intensively studied on flat metal surfaces, high-index vicinal surfaces remain challenging, as they may induce complex adsorbate structures. The adsorption of 2,6-dibromoanthraquinone (2,6-DBAQ) on flat and stepped gold surfaces is studied by means of van der Waals corrected density functional theory. Equilibrium geometries and corresponding adsorption energies are systematically investigated for various different adsorption configurations. It is shown that bridge sites and step edges are the preferred adsorption sites for single molecules on flat and stepped surfaces, respectively. The role of van der Waals interactions, halogen bonds and hydrogen bonds are explored for a monolayer coverage of 2,6-DBAQ molecules, revealing that molecular flexibility and intermolecular interactions stabilize two-dimensional networks on both flat and stepped surfaces. Our results provide a rationale for experimental observation of molecular carpeting on high-index vicinal surfaces of transition metals. (C) 2017 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 25
    Citation - Scopus: 25
    Temperature-Tuned Band Gap Properties of Mos2 Thin Films
    (Elsevier, 2020) Surucu, O.; Isik, M.; Gasanly, N. M.; Terlemezoglu, M.; Parlak, M.
    MoS2 is one of the fascinating members of transition metal dichalcogenides and has attracted great attention due to its various optoelectronic device applications and its characteristic as two-dimensional material. The present paper reports the structural and temperature tuned optical properties of MoS2 thin films grown by RF magnetron sputtering technique. It was observed that the atomic composition ratio of Mo:S was nearly equal to 1:2 and the deposited thin films have hexagonal crystalline structure exhibiting Raman peaks around 376 and 410 cm(-1). The band gap energies were determined as 1.66 and 1.71 eV at 300 and 10 K, respectively and temperature dependency of band gap energy was analyzed by means of Varshni and O'Donnell-Chen models. (C) 2020 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 94
    Citation - Scopus: 100
    A New Soluble Neutral State Black Electrochromic Copolymer Via a Donor-Acceptor Approach
    (Elsevier, 2010) Icli, Merve; Pamuk, Melek; Algi, Fatih; Onal, Ahmet M.; Cihaner, Atilla
    Two donor-acceptor systems, 2-decyl-4,7-bis(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-2H-benzo[d][1,2,3]triazole (1) and 4,7-bis(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-2,1,3-benzoselenadiazole (2) are explored in order to attain a low bandgap black polymer electrochrome, which is highly difficult to attain due to the complexity of designing such materials. Electrochemical polymerization of 1 and 2 in 1:4 monomer feed ratio was performed in a mixture of acetonitrile and dichloromethane solution containing 0.1 M tetrabutylammonium hexafluorophosphate. It was found that electropolymerization provides a processable neutral state black copolymer, (P(1-co-2)), which absorbs virtually the whole visible spectrum (400-800 nm). (P(1-co-2)) is the first low bandgap (1.45 eV) electropolymerized material, which switches from black color (L = 14.3, a = 0.29, b = 0.35) in the neutral state to transmissive grey (L = 39.2, a = 0.29, b = 0.33) in the oxidized state with 15.3% of the transmittance change at 522 nm. Furthermore, it exhibits excellent operational and/or environmental stability under ambient conditions. (c) 2010 Elsevier B.V. All rights reserved.