11 results
Search Results
Now showing 1 - 10 of 11
Article Citation - WoS: 10Citation - Scopus: 11Low Temperature Thermoluminescence of Gd2o3< Nanoparticles Using Various Heating Rate and tmax< - texc< Methods(Elsevier, 2019) Delice, Serdar; Isik, Mehmet; Gasanly, Nizami M.Thermoluminescence (FL) measurements for Gd2O3 nanoparticles were carried out for various heating rates between 0.3 and 0.8 K/s at low temperatures (10-280 K). TL spectrum exhibited two observable and one faint peaks in the temperature region of 10-100 K, and four peaks in the temperature region of 160-280 K. Heating rate analysis was achieved to understand the behaviors of trap levels. It was seen that the peak maximum temperatures and TL intensities of all peaks increase with increasing heating rate. This behavior was ascribed to anomalous heating rate effect. T-max - T(exc )analysis was accomplished for TL, peaks at relatively higher temperature region to reveal the related traps depths. T-max - T-exc plot presented a staircase structure indicating that the TL glow curve is composed of well separated glow peaks. Mean activation energies of trapping centers corresponding to these separated peaks were found as 0.43, 0.50, 0.58 and 0.80 eV.Article Citation - WoS: 14Citation - Scopus: 14Low Temperature Thermoluminescence Behaviour of Y2o3< Nanoparticles(Elsevier, 2019) Delice, S.; Isik, M.; Gasanly, N. M.Y2O3 nanoparticles were investigated using low temperature thermoluminescence (TL) experiments. TL glow curve recorded at constant heating rate of 0.4 K/s exhibits seven peaks around 19, 62, 91, 115, 162, 196 and 215 K. Activation energies and characteristics of traps responsible for observed curves were revealed under the light of results of initial rise analyses and T-max-T-stop experimental methods. Analyses of TL curves obtained at different stopping temperatures resulted in presence of one quasi-continuously distributed trap with activation energies increasing from 18 to 24 meV and six single trapping centers at 49, 117, 315, 409, 651 and 740 meV. Activation energies of all revealed centers were reported in the present paper. Structural characterization of Y2O3 nanoparticles was accomplished using X-ray diffraction and scanning electron microscopy measurements. (C) 2019 Chinese Society of Rare Earths. Published by Elsevier B.V. All rights reserved.Article Citation - WoS: 5Citation - Scopus: 5Identification of Shallow Trap Centers in Inse Single Crystals and Investigation of Their Distribution: a Thermally Stimulated Current Spectroscopy(Elsevier, 2024) Isik, M.; Gasanly, N. M.Identification of trap centers in semiconductors takes great importance for improving the performance of electronic and optoelectronic devices. In the present study, we employed the thermally stimulated current (TSC) method within a temperature range of 10-280 K to explore trap centers in InSe crystal-a material with promising applications in next-generation devices. Our findings revealed the existence of two distinct hole trap centers within the InSe crystal lattice located at 0.06 and 0.14 eV. Through the leveraging the T-stop method, we offered trap distribution parameters of revealed centers. The results obtained from the experimental methodology employed to investigate the distribution of trap centers indicated that one of the peaks extended between 0.06 and 0.13 eV, while the other spanned from 0.14 to 0.31 eV. Notably, our research uncovers a remarkable variation in trap density, spanning one order of magnitude, for every 10 and 88 meV of energy variation. The results of our research present the characteristics of shallow trap centers in InSe, providing important information for the design and optimization of InSe-based optoelectronic devices.Article Citation - WoS: 1Citation - Scopus: 1Shallow Trapping Centers in Bi12geo20 Single Crystals by Thermally Stimulated Current Measurements(Elsevier, 2022) Delice, S.; Isik, M.; Gasanly, N. M.Bi12GeO20 single crystals were investigated by thermally stimulated current (TSC) experiments performed in the temperature range of 10-290 K. Recorded TSC glow curve exhibited six distinctive peaks with maxima at around 90, 105, 166, 209, 246, 275 K. The analyses of the obtained glow curve were accomplished by curve fitting and initial rise methods. The analysis results were in good agreement that the TSC peaks appeared in the glow curve due to existence of trapping levels with activation energies of 0.10, 0.18, 0.23, 0.53, 0.68 and 0.73 eV. These trapping levels were estimated to be hole traps above valence band. The heating rate dependent TSC glow curves were also obtained for various rates between 0.30 and 0.45 K/s. The changes of TSC intensity, peak maximum temperature and full-widths-half-maximum values with heating rates were studied in detail. TSC intensity decreased and peak maximum temperature increased with increasing heating rate. Determination of defects and trapping/stimulation mechanism of those are significant for technological applications since local states in these materials take critical role for device performance.Article Citation - WoS: 14Citation - Scopus: 18Traps distribution in sol-gel synthesized ZnO nanoparticles(Elsevier, 2019) Delice, S.; Isik, M.; Gasanly, N. M.The distribution of shallow traps within the sol-gel synthesized ZnO nanoparticles was investigated using thermoluminescence (TL) experiments in the 10-300 K temperature range. TL measurements presented two overlapped peaks around 110 and 155 K. The experimental technique based on radiating the nanoparticles at different temperatures (T-exc.) between 60 and 125 K was carried out to understand the trap distribution characteristics of peaks. It was observed that peak maximum temperature shifted to higher values and activation energy (E-t) increased as irradiating temperature was increased. The E-t vs. T-exc. presented that ZnO nanoparticles have quasi-continuously distributed traps possessing activation energies increasing from 80 to 171 meV. (C) 2019 Elsevier B.V. All rights reserved.Article Citation - WoS: 8Citation - Scopus: 8Defect Characterization in Bi12geo20< Single Crystals by Thermoluminescence(Elsevier, 2021) Delice, S.; Isik, M.; Sarigul, N.; Gasanly, N. M.Bi12GeO20 single crystal grown by Czochralski method was investigated in terms of thermoluminescence (TL) properties. TL experiments were performed for various heating rates between 1 and 6 K/s in the temperature region of 300-675 K. One TL peak with peak maximum temperature of 557 K was observed in the TL spectrum as constant heating rate of 1 K/s was employed. Curve fitting, initial rise and variable heating rate methods were applied to calculate the activation energy of trap level corresponding to this TL peak. Analyses resulted in a presence of one trap center having mean activation energy of 0.78 eV. Heating rate characteristics of revealed trap center was also explored and theoretically well-known behavior that TL intensity decreases and peak maximum temperature increases with heating rates was observed for the trap level. Distribution of trapping levels was studied by thermally cleaning process for different T-stop between 425 and 525 K. Quasi-continuously distributed trapping levels were revealed with mean activation energies ranging from 0.78 to 1.26 eV. Moreover, absorption analysis revealed an optical transition taking place between a defect level and conduction band with an energy difference of 2.51 eV. These results are in good agreement for the presence of intrinsic defects above valence band in Bi12GeO20 crystals.Article Citation - WoS: 4Citation - Scopus: 5Thermoluminescence characteristics of GaSe and Ga2Se3 single crystals(Elsevier, 2022) Isik, M.; Sarigul, N.; Gasanly, N. M.GaSe and Ga2Se3 are semiconducting compounds formed from same constituent elements. These compounds have been attractive due to their optoelectronic and photovoltaic applications. Defects take remarkable attention since they affect quality of semiconductor devices. In the present paper, deep defect centers in GaSe and Ga2Se3 single crystals grown by Bridgman method were reported from the analyses of thermoluminescence measurements performed in the 350-675 K range. Experimental TL curves of GaSe and Ga2Se3 single crystals presented one and two overlapped peaks, respectively. The applied curve fitting and initial rise techniques were in good agreement about trap activation energies of 0.83 eV for GaSe, 0.96 and 1.24 eV for Ga2Se3 crystals. Crystalline structural properties of the grown single crystals were also investigated by x-ray diffraction measurements. The peaks observed in XRD patterns of the GaSe and Ga2Se3 crystals were well-consistent with hexagonal and zinc blende structures, respectively.Article Citation - WoS: 5Citation - Scopus: 6Thermoluminescence Properties and Trapping Parameters of Tlgas2 Single Crystals(Elsevier, 2022) Delice, S.; Isik, M.; Gasanly, N. M.TlGaS2 layered single crystals have been an attractive research interest due to their convertible characteristics into 2D structure. In the present paper, structural, optical and thermoluminescence properties of TlGaS2 single crystals were investigated. XRD pattern of the crystal presented five well-defined peaks associated with monoclinic unit cell. Band gap and Urbach energies were found to be 2.57 and 0.25 eV, respectively, from the analyses of transmittance spectrum. Thermoluminescence measurements were carried out above room temperature up to 660 K at various heating rates. One TL peak with peak maximum temperature of 573 K was obtained in the TL spectrum at 1.0 K/s. Curve fitting, initial rise and variable heating rate methods were used for analyses. All of those resulted in presence of a deep trapping level with activation energy around 0.92 eV. Heating rate dependence of the TL peak was also studied and it was indicated that peak maximum temperature shifted to higher temperatures besides decreasing TL intensity as the higher heating rates were employed.Article Citation - WoS: 9Citation - Scopus: 9TL and TSC studies on TlGaSe2 layered single crystals(Elsevier, 2013) Isik, M.; Bulur, E.; Gasanly, N. M.Defects in - as grown - TlGaSe2 layered single crystals were investigated using Thermoluminescence (TL) and Thermally Stimulated Currents (TSC) techniques in the temperature range 10-300 K. TL and TSC curves of samples illuminated using a light with energy greater than the band gap of the material, i.e. blue light (similar to 470 nm) at 10 K, exhibited peaks around 27 and 28 K, respectively, when measured by heating up the samples at a rate of 1 K/s. TL and TSC curves were analyzed to characterize the defects responsible for the peaks. Both TL and TSC peaks were observed to be obeying first order kinetics. Thermal activation energies of the peaks were determined using various methods: curve fitting, initial rise, peak shape and different heating rates. For both TL and TSC peaks, thermal activation energy was determined as around 8 meV, implying that they may originate from similar kinds of trapping centers. A distribution of traps (in terms of energy) was experimentally verified by illuminating the sample at different temperatures and measuring the TL curves. As a result of this, the apparent thermal energies were observed to be shifted from similar to 8 to similar to 17 meV by increasing the illumination temperature from 10 to 16 K. (C) 2013 Elsevier B.V. All rights reserved.Article Citation - WoS: 4Citation - Scopus: 4Trapping Centers in Bi12tio20< Single Crystals by Thermally Stimulated Current(Elsevier, 2021) Isik, M.; Delice, S.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.Sillenite group compounds have been widely utilized in photocatalytic applications. One of the member of this group, Bi12TiO20 single crystal, was grown by Czochralski method. The structural properties were investigated by x-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. XRD pattern presented well-defined intensive peaks associated with cubic crystalline structure. SEM images indicated the crystal surface as almost uniform and smooth. Thermally stimulated current (TSC) experiments were performed in the 10-280 K temperature range to reveal shallow trapping centers in the Bi12TiO20 single crystal. Two peaks around 112 and 179 K were observed in the TSC glow curve. The analyses of these curves considering the curve fitting and peak shape techniques resulted in presence of two hole centers at 0.09 and 0.14 eV. Heating rate dependencies of peak maximum temperature and current were also investigated throughout the paper.

