TL and TSC studies on TlGaSe<sub>2</sub> layered single crystals
Loading...

Date
2013
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
Defects in - as grown - TlGaSe2 layered single crystals were investigated using Thermoluminescence (TL) and Thermally Stimulated Currents (TSC) techniques in the temperature range 10-300 K. TL and TSC curves of samples illuminated using a light with energy greater than the band gap of the material, i.e. blue light (similar to 470 nm) at 10 K, exhibited peaks around 27 and 28 K, respectively, when measured by heating up the samples at a rate of 1 K/s. TL and TSC curves were analyzed to characterize the defects responsible for the peaks. Both TL and TSC peaks were observed to be obeying first order kinetics. Thermal activation energies of the peaks were determined using various methods: curve fitting, initial rise, peak shape and different heating rates. For both TL and TSC peaks, thermal activation energy was determined as around 8 meV, implying that they may originate from similar kinds of trapping centers. A distribution of traps (in terms of energy) was experimentally verified by illuminating the sample at different temperatures and measuring the TL curves. As a result of this, the apparent thermal energies were observed to be shifted from similar to 8 to similar to 17 meV by increasing the illumination temperature from 10 to 16 K. (C) 2013 Elsevier B.V. All rights reserved.
Description
Gasanly, Nizami/0000-0002-3199-6686; Gasanly, Nizami/0000-0002-3199-6686; Bulur, Enver/0000-0002-4000-7966
Keywords
Thermoluminescence, Thermally stimulated currents, Chalcogenides, Defects, Impurities
Fields of Science
0103 physical sciences, 02 engineering and technology, 0210 nano-technology, 01 natural sciences
Citation
WoS Q
Q2
Scopus Q

OpenCitations Citation Count
9
Source
Journal of Luminescence
Volume
144
Issue
Start Page
163
End Page
168
PlumX Metrics
Citations
CrossRef : 3
Scopus : 9
Captures
Mendeley Readers : 10
SCOPUS™ Citations
9
checked on Feb 17, 2026
Web of Science™ Citations
9
checked on Feb 17, 2026
Page Views
3
checked on Feb 17, 2026
Google Scholar™


