4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 2Citation - Scopus: 3Uncorrelatedness and Correlatedness of Powers of Random Variables(Birkhauser verlag Ag, 2002) Ostrovska, SLet xi(1),...,xi(n) be random variables and U be a subset of the Cartesian prodnet Z(+)(n), Z(+) being the set of all non-negative integers. The random variables are said to be strictly U-uncorrelated if E(xi(1)(j1) ... xi(n)(jn)) = E(xi(1)(j1)) ... E(xi(n)(jn)) double left right arrow (j(1), ..., j(n)) is an element of U. It is proved that for an arbitrary subset U subset of or equal to Z(+)(n) containing all points with 0 or I non-zero coordinates there exists a collection of n strictly U-uncorrelated random variables.Article Citation - WoS: 9Citation - Scopus: 13Solution of Initial Value Problems With Monogenic Initial Functions in Banach Spaces With lp<(Birkhauser verlag Ag, 2010) Yuksel, UgurThis paper deals with the initial value problem of the type partial derivative u(t,x)/partial derivative t = Lu(t,x), u(0,x) = u(0)(x) (0.1) in Banach spaces with L-p-norm, where t is the time, u(0) is a monogenic function and the operator L is of the form Lu(t,x) := Sigma(A,B,i) C-B,i((A))(t,x)partial derivative u(B)(t,x)/partial derivative x(i)e(A). (0.2) The desired function u(t,x) = Sigma(B) u(B)(t,x)e(B) defined in [0, T] x Omega subset of R-0(+) x Rn+1 is a Clifford-algebra-valued function with real-valued components u(B)(t, x). We give sufficient conditions on the coefficients of the operator L under which L is associated to the Cauchy-Riemann operator D of CLIFFORD analysis. For such an operator L the initial value problem (0.1) is solvable for an arbitrary monogenic initial function u(0) and the solution is also monogenic for each t.Article Citation - WoS: 6Citation - Scopus: 8Solution of Initial Value Problems of Cauchy-Kovalevsky Type in the Space of Generalized Monogenic Functions(Birkhauser verlag Ag, 2010) Yueksel, Ugur; Celebi, A. OkayThis paper deals with the initial value problem of the type partial derivative(t)u(t, x) = Lu(t, x), u(0, x) = u(0)(x) where t is an element of R(0)(+) is the time, x is an element of R(n+1), u(0)(x) is a generalized monogenic function and the operator L, acting on a Clifford-algebra-valued function u(t, x) = Sigma(B) u(B)(t, x)e(B) with real-valued components u(B)(t, x), is defined by Lu(t, x) := Sigma(A,B,i) c(B,i)((A)) (t, x)partial derivative(xi) u(B)(t, x)e(A) + Sigma(A,B) d(B)((A)) (t, x)u(B)(t, x)e(A) + Sigma(A)gA(t,x)e(A). We formulate sufficient conditions on the coefficients of the operator L under which L transforms generalized monogenic functions again into generalized monogenic functions. For such an operator the initial value problem (0.1) is solvable for an arbitrary generalized monogenic initial function u(0) and the solution is also generalized monogenic for each t.Conference Object Citation - WoS: 12Dirichlet Problems for the Generalized n-poisson Equation(Birkhauser verlag Ag, 2010) Aksoy, U.; Celebi, A. O.Polyharmonic hybrid Green functions, obtained by convoluting polyharmonic Green and Almansi Green functions, are taken as kernels to define a hierarchy of integral operators. They are used to investigate the solvability of some types of Dirichlet problems for linear complex partial differential equations with leading term as the polyharmonic operator.

