Uncorrelatedness and Correlatedness of Powers of Random Variables
No Thumbnail Available
Date
2002
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Birkhauser verlag Ag
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Let xi(1),...,xi(n) be random variables and U be a subset of the Cartesian prodnet Z(+)(n), Z(+) being the set of all non-negative integers. The random variables are said to be strictly U-uncorrelated if E(xi(1)(j1) ... xi(n)(jn)) = E(xi(1)(j1)) ... E(xi(n)(jn)) double left right arrow (j(1), ..., j(n)) is an element of U. It is proved that for an arbitrary subset U subset of or equal to Z(+)(n) containing all points with 0 or I non-zero coordinates there exists a collection of n strictly U-uncorrelated random variables.
Description
Keywords
[No Keyword Available]
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q3
Scopus Q
Q3
Source
Volume
79
Issue
2
Start Page
141
End Page
146