Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Experimental Determination of Resistance Characteristics of Support Details Used in Prestressed Concrete Bridge Girders
    (Asce-amer Soc Civil Engineers, 2009) Baran, Eray; Rohne, Ryan; French, Catherine E.; Schultz, Arturo E.
    Static load tests were performed on support details used at the ends of prestressed concrete pedestrian bridge girders to determine the resistance characteristics of girder supports in the direction perpendicular to the longitudinal axis of the girders. The specimens tested represent support details that have also been widely used in prestressed concrete highway bridges in Minnesota and in other states. Two specimens, one representing the free-end detail and one representing the restrained-end detail were subjected to a combination of vertical and lateral loads. The applied loading was intended to simulate the loading conditions to which the girder ends would be subjected in the event of an over-height vehicle collision with the bridge. The tests revealed two types of lateral load resisting mechanisms depending on the type of support detail. The specimen with the free-end detail resisted the lateral loading through sliding friction between the components of the support assembly. Deformation of this specimen was a combination of shear deformation of the bearing pad and sliding of various support components. The restrained-end detail exhibited larger lateral load capacity than the free-end detail due to the resistance provided by the anchor rods that were intended to prevent the lateral movement of the girder ends. Failure of the specimen with restrained-end detail was due to the concrete breakout and bending of the anchor rods.
  • Article
    Citation - WoS: 24
    Activity Uncrashing Heuristic With Noncritical Activity Rescheduling Method for the Discrete Time-Cost Trade-Off Problem
    (Asce-amer Soc Civil Engineers, 2020) Sonmez, Rifat; Aminbakhsh, Saman; Atan, Tankut
    Despite intensive research efforts that have been devoted to discrete time-cost optimization of construction projects, the current methods have very limited capabilities for solving the problem for real-life-sized projects. This study presents a new activity uncrashing heuristic with noncritical activity rescheduling method to narrow the gap between the research and practice for time-cost optimization. The uncrashing heuristic searches for new solutions by uncrashing the critical activities with the highest cost-slope. This novel feature of the proposed heuristic enables identification and elimination of the dominated solutions during the search procedure. Hence, the heuristic can determine new high-quality solutions based on the nondominated solutions. Furthermore, the proposed noncritical activity rescheduling method of the heuristic decreases the amount of scheduling calculations, and high-quality solutions are achieved within a short CPU time. Results of the computational experiments reveal that the new heuristic outperforms state-of-the-art methods significantly for large-scale single-objective cost minimization and Pareto front optimization problems. Hence, the primary contribution of the paper is a new heuristic method that can successfully achieve high-quality solutions for large-scale discrete time-cost optimization problems.