Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - WoS: 8
    Citation - Scopus: 10
    Computing Reliability Indices of a Wind Power System Via Markov Chain Modelling of Wind Speed
    (Sage Publications Ltd, 2024) Eryilmaz, Serkan; Bulanik, Irem; Devrim, Yilser
    Statistical modelling of wind speed is of great importance in the evaluation of wind farm performance and power production. Various models have been proposed in the literature depending on the corresponding time scale. For hourly observed wind speed data, the dependence among successive wind speed values is inevitable. Such a dependence has been well modelled by Markov chains. In this paper, the use of Markov chains for modelling wind speed data is discussed in the context of the previously proposed likelihood ratio test. The main steps for Markov chain based modelling methodology of wind speed are presented and the limiting distribution of the Markov chain is utilized to compute wind speed probabilities. The computational formulas for reliability indices of a wind farm consisting of a specified number of wind turbines are presented through the limiting distribution of a Markov chain. A case study that is based on real data set is also presented.
  • Conference Object
    Citation - WoS: 9
    Citation - Scopus: 14
    Design of a Hybrid Photovoltaic-Electrolyzer Fuel Cell System for Developing Solar Model
    (Wiley-v C H verlag Gmbh, 2015) Devrim, Yilser; Pehlivanoglu, Kubra
    The world's fossil fuel energy reserves have rapidly decreased, while the energy demand has increased due to industrial growth, population growth, and technology advances, all of which affect the environment by the production of greenhouse gases. Alternative energy sources such as solar, hydrogen, etc. are attracting more attention as an alternative of fossil fuels. We present in this study hybrid photovoltaic (PV) panels/PEM electrolyzer/high temperature proton exchange membrane fuel cell (HTPEMFC) system used in off-grid application. The purpose of a hybrid system is to produce as much energy from alternative energy sources to ensure the load demand. Solar energy is used as primary source and a fuel cell is used as backup power. The hybrid system is designed and analyzed according to the new solar radiation model. Firstly a new solar model is developed to determine solar radiation on horizontal surface. After that solar radiation on tilted surface is obtained by using solar radiation on horizontal surface model for PV panel calculations. The hybrid system is modelled and the obtained results presented and discussed. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim