Search Results

Now showing 1 - 10 of 64
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Analysis of Optical Constants and Temperature-Dependent Absorption Edge of Gas0.75se0.25< Layered Crystals
    (Pergamon-elsevier Science Ltd, 2017) Isik, Mehmet; Gasanly, Nizami
    GaS0.75Se0.25 single crystals were optically characterized through transmission and reflection measurements in the wavelength range of 450-1000 nm. Derivative spectrophotometry analyses on temperature dependent transmittance spectra showed that band gap energies of the crystal increase from 239 eV (T=300 K) to 2.53 eV (T=10 K). Band gap at zero temperature, average phonon energy, electron phonon coupling parameter and rates of change of band gap energy with temperature were found from the temperature dependences of band gap energies under the light of different models reported in literature. Furthermore, the dispersion of room temperature refractive index was discussed in terms of single effective oscillator model. The refractive index dispersion parameters, namely oscillator and dispersion energies, zero-frequency refractive index, were determined as a result of analyses. (C) 2017 Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Temperature-Tuned Band Gap Energy and Oscillator Parameters of Gas0.5se0.5< Single Crystals
    (Elsevier Gmbh, Urban & Fischer verlag, 2016) Isik, Mehmet; Tugay, Evrin; Gasanly, Nizami
    Temperature-dependent transmission and room temperature reflection measurements were carried out on GaS0.5Se0.5 single crystal in the wavelength range of 380-1000 nm to investigate its optical parameters. The analysis of the temperature-dependent absorption data showed that direct and indirect band gap energies increase from 2.36 to 2.50 eV and 2.27 to 2.40 eV, respectively, as temperature is decreased from 300 to 10 K. The rates of change of the direct and indirect band gap energies with temperature was found around -7.4 x 10(-4) eV/K from the analysis of experimental data under the light of theoretical relation giving the band gap energy as a function of temperature. The absolute zero value of the band gap energies were also found from the same analysis as 2.50 eV (for direct) and 2.40 eV (for indirect). Wemple-DiDomenico single effective oscillator model, Sellmeier oscillator model and Spitzer-Fan model were used for the room temperature reflection data to find optical parameters of the crystal. (C) 2016 Elsevier GmbH. All rights reserved.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Temperature and Excitation Intensity Tuned Photoluminescence in Ga0.75in0.25< Crystals
    (Elsevier Science Bv, 2013) Isik, M.; Guler, I.; Gasanly, N. M.
    Photoluminescence (PL) spectra of Ga0.75In0.25Se layered single crystals have been studied in the wavelength range of 580-670 nm and temperature range of 7-59 K. Two PL emission bands centered at 613 nm (2.02 eV, A-band) and 623 nm (1.99 eV, B-band) were revealed at T = 7K. The excitation laser intensity dependence of the emission bands have been studied in the 0.06-1.40 W cm(-2) range. Radiative transitions from shallow donor levels located at E-A = 0.11 and E-B = 0.15 eV below the bottom of conduction band to single shallow acceptor level located at 0.01 eV above the valence band are suggested to be responsible for the observed A- and B-bands. A simple model was proposed to interpret the recombination processes in Ga0.75In0.25Se single crystals. (c) 2012 Elsevier B.V. All rights reserved.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 14
    Linear and Nonlinear Optical Properties of Bi12geo20 Single Crystal for Optoelectronic Applications
    (Elsevier Sci Ltd, 2023) Isik, M.; Gasanly, N. M.
    The present paper aims at presenting linear and nonlinear optical properties of Bi12GeO20 single crystals grown by Czochralski method. Transmission and reflection measurements were performed in the 400-1000 nm region. The recorded spectra were analyzed considering well-known optical models. Spectral dependencies of absorption coefficient, skin depth, refractive index, real and imaginary components of dielectric function were presented. The analyses performed on absorption coefficient showed direct bandgap and Urbach energies as 2.56 and 0.22 eV, respectively. The first-and third-order nonlinear susceptibilities and nonlinear refractive index of the crystal were also reported in the present work. The results of the present paper would provide valuable information for optoelectronic device applications of Bi12GeO20.
  • Article
    Citation - WoS: 23
    Citation - Scopus: 25
    Investigation of Optical Properties of Bi12geo20< Sillenite Crystals by Spectroscopic Ellipsometry and Raman Spectroscopy
    (Elsevier Sci Ltd, 2020) Isik, M.; Delice, S.; Gasanly, N. M.; Darvishov, N. H.; Bagiev, V. E.
    Bi12GeO20 (BGO) compound is one of the fascinating members of sillenites group due to its outstanding photorefractive and photocatalytic characteristics. The present paper aims at investigating optical properties of BGO crystals by means of spectroscopic ellipsometry and Raman spectroscopy measurements. Bi12GeO20 single crystals grown by Czochralski method were structurally characterized by X-ray diffraction (XRD) experiments and the analyses showed that studied crystals have cubic crystalline structure. Raman spectrum exhibited 15 peaks associated with A, E and F modes. Spectroscopic ellipsometry measurement data achieved in the energy region between 1.2 and 6.2 eV were used in the air/sample optical model to get knowledge about complex pseudodielectric constant, pseudorefractive index, pseudoextinction and absorption coefficients of the crystals. Spectral change of real and imaginary part of complex pseudodielectric constant were discussed in detail. Band gap energy of Bi12GeO20 single crystals was calculated to be 3.18 eV using absorption coefficient dependency on photon energy. Critical point energies at which photons are strongly absorbed were determined by utilizing the second energy derivative spectra of components of complex pseudodielectric function. Fitting of both spectra resulted in the presence of four interband transitions with energies of 3.49, 4.11, 4.67 and 5.51 eV.
  • Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Optical Characterization of Nabi(moo4)2< Crystal by Spectroscopic Ellipsometry
    (Springer Heidelberg, 2024) Guler, I.; Isik, M.; Gasanly, N. M.
    The compound NaBi(MoO4)(2) has garnered significant interest in optoelectronic fields. This study employs spectroscopic ellipsometry to thoroughly examine the linear and nonlinear optical characteristics of NaBi(MoO4)(2) crystals, offering detailed insights into their optical behavior. Our investigation presents a precise method for discerning the crystal's spectral features, revealing the spectral variations of key optical parameters such as refractive index, extinction coefficient, dielectric function, and absorption coefficient within the 1.2-5.0 eV range. Through analysis, we determined optical attributes including bandgap energy, critical point energy, and single oscillator parameters. Additionally, we explored the nonlinear optical properties of NaBi(MoO4)(2), unveiling potential applications such as optoelectronic devices, frequency conversion, and optical sensors. This study enhances comprehension of optical properties of NaBi(MoO4)(2), underscoring its significance in future optical and electronic advancements.
  • Article
    Citation - WoS: 16
    Citation - Scopus: 16
    Temperature-Dependent Optical Characteristics of Sputtered Ga-Doped Zno Thin Films
    (Elsevier, 2021) Gullu, H. H.; Isik, M.; Gasanly, N. M.; Parlak, M.
    The present paper reports structural and optical properties of gallium (Ga) doped ZnO thin films (GZO) grown by magnetron sputtering technique. The crystalline properties were determined from X-ray diffraction measurements and analyses pointed out the crystalline structure as hexagonal, crystalline size as 43 nm and strain as 6.9 x 10(-5). Derivative spectroscopy analyses showed that band gap energy of GZO thin films decreases from 3.50 eV (10 K) to 3.45 eV (300 K). Temperature-band gap energy dependency was analyzed using Varshni and O'DonnellChen models. The absolute zero band gap energy, the rate of change of band gap energy with temperature and phonon energy were found as 3.50 eV, -2.8 x 10(-4) eV/K and 15 meV, respectively. The room temperature band gap and Urbach energies were also determined as 3.43 eV and 102 meV, respectively, from the absorption analysis.
  • Article
    Citation - WoS: 20
    Citation - Scopus: 24
    Temperature Dependence of Band Gaps in Sputtered Snse Thin Films
    (Pergamon-elsevier Science Ltd, 2019) Delice, S.; Isik, M.; Gullu, H. H.; Terlemezoglu, M.; Surucu, O. Bayrakli; Parlak, M.; Gasanly, N. M.
    Temperature-dependent transmission experiments were performed for tin selenide (SnSe) thin films deposited by rf magnetron sputtering method in between 10 and 300 K and in the wavelength region of 400-1000 nm. Transmission spectra exhibited sharp decrease near the absorption edge around 900 nm. The transmittance spectra were analyzed using Tauc relation and first derivative spectroscopy techniques to get band gap energy of the SnSe thin films. Both of the applied methods resulted in existence of two band gaps with energies around 1.34 and 1.56 eV. The origin of these band gaps was investigated and it was assigned to the splitting of valence band into two bands due to spin-orbit interaction. Alteration of these band gap values due to varying sample temperature of the thin films were also explored in the study. It was seen that the gap energy values increased almost linearly with decreasing temperature as expected according to theoretical knowledge.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Sns2 and Ho-Doped Sns2 Thin Films: Synergistic, Dft, Photocatalytic, and Antibacterial Studies
    (Elsevier Sci Ltd, 2024) Radja, Imane; Khane, Yasmina; Oliveira, Marisa C.; Longo, Elson; Ribeiro, Renan A. P.; Isik, Mehmit; Khan, Mohammad Mansoob
    This study investigates Ho-doped tin disulfide (Ho-SnS2) thin films prepared via spray coating, focusing on varying Ho doping levels (0 at. %, 2 at. %, and 4 at. %). Structural analysis through XRD and SEM showcased enhanced crystallinity and morphology in Ho-SnS2 films. Raman and XPS studies provided insight into the film's composition and chemical states. The antibacterial properties of the films were investigated using a bacterial growth inhibition assay. The results showed significant antibacterial activity against Gram-positive and Gram-negative bacteria, highlighting the potential applications of Ho-SnS2 thin films in antibacterial coatings. Ho-SnS2 films exhibited superior photocatalytic activity and antibacterial properties compared to SnS2 films, attributed to efficient charge separation. DFT analysis proposed a mechanism for the antibacterial activity. These findings highlight the efficacy of the spray coating technique in producing Ho-SnS2 films and the potential of Ho-SnS2 films for diverse applications like photocatalysis and antibacterial coatings.
  • Article
    Citation - WoS: 7
    Citation - Scopus: 7
    In situ monitoring of the permanent crystallization, phase transformations and the associated optical and electrical enhancements upon heating of Se thin films
    (Elsevier Science Bv, 2019) Qasrawi, A. F.; Aloushi, Hadil D.
    In this work, the in situ structural transformations from amorphous to polycrystalline upon heating and the associated enhancements in the structural parameters of selenium thin films are studied by means of X-ray diffraction technique. The Se thin films which are grown onto ultrasonically cleaned glass substrate by the thermal evaporation technique under vacuum pressure of 10(-5) mbar exhibits structural transformation from amorphous to polycrystalline near 353 K. The films completed the formation of the structure which includes both of the hexagonal and monoclinic phases at 363 K. It is observed that the hexagonal phase dominates over the monoclinic as temperature is raised. Consistently, the thermally assisted crystallization process is accompanied with increase in the crystallite size, decrease in the microstrain, decrease in defect density and decrease in the percentage of stacking faults. The scanning electron microscopy measurements also confirmed the crystallinity of selenium after heating. The time dependent reputations of the crystallization test has shown that the achieved phase transitions and enhancements in structural parameters are permanent in selenium. Optically, the crystallization process is observed to be associated with redshift in the absorption spectra and in the value of the energy band gap. Electrically, the in situ monitoring of the electrical conductivity during the heating cycle has shown that the electrical conductivity stabilizes and exhibit a decrease in the acceptor levels from 566 to 321 meV after the crystallization was achieved.