Temperature-Tuned Band Gap Energy and Oscillator Parameters of Gas<sub>0.5</Sub>se<sub>0.5< Single Crystals

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Gmbh, Urban & Fischer verlag

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Events

Abstract

Temperature-dependent transmission and room temperature reflection measurements were carried out on GaS0.5Se0.5 single crystal in the wavelength range of 380-1000 nm to investigate its optical parameters. The analysis of the temperature-dependent absorption data showed that direct and indirect band gap energies increase from 2.36 to 2.50 eV and 2.27 to 2.40 eV, respectively, as temperature is decreased from 300 to 10 K. The rates of change of the direct and indirect band gap energies with temperature was found around -7.4 x 10(-4) eV/K from the analysis of experimental data under the light of theoretical relation giving the band gap energy as a function of temperature. The absolute zero value of the band gap energies were also found from the same analysis as 2.50 eV (for direct) and 2.40 eV (for indirect). Wemple-DiDomenico single effective oscillator model, Sellmeier oscillator model and Spitzer-Fan model were used for the room temperature reflection data to find optical parameters of the crystal. (C) 2016 Elsevier GmbH. All rights reserved.

Description

Tugay, Evrin/0000-0002-3951-6384; Gasanly, Nizami/0000-0002-3199-6686; Gasanly, Nizami/0000-0002-3199-6686;

Keywords

Semiconductors, Optical properties, Absorption

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Source

Volume

127

Issue

20

Start Page

8301

End Page

8305

Collections