3 results
Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 29Citation - Scopus: 43Text Classification Using Improved Bidirectional Transformer(Wiley, 2022) Tezgider, Murat; Yıldız, Beytullah; Yildiz, Beytullah; Aydin, Galip; Yıldız, BeytullahText data have an important place in our daily life. A huge amount of text data is generated everyday. As a result, automation becomes necessary to handle these large text data. Recently, we are witnessing important developments with the adaptation of new approaches in text processing. Attention mechanisms and transformers are emerging as methods with significant potential for text processing. In this study, we introduced a bidirectional transformer (BiTransformer) constructed using two transformer encoder blocks that utilize bidirectional position encoding to take into account the forward and backward position information of text data. We also created models to evaluate the contribution of attention mechanisms to the classification process. Four models, including long short term memory, attention, transformer, and BiTransformer, were used to conduct experiments on a large Turkish text dataset consisting of 30 categories. The effect of using pretrained embedding on models was also investigated. Experimental results show that the classification models using transformer and attention give promising results compared with classical deep learning models. We observed that the BiTransformer we proposed showed superior performance in text classification.Article Citation - WoS: 11Citation - Scopus: 20Reinforcement Learning Using Fully Connected, Attention, and Transformer Models in Knapsack Problem Solving(Wiley, 2022) Yildiz, Beytullah; Yıldız, Beytullah; Yıldız, BeytullahKnapsack is a combinatorial optimization problem that involves a variety of resource allocation challenges. It is defined as non-deterministic polynomial time (NP) hard and has a wide range of applications. Knapsack problem (KP) has been studied in applied mathematics and computer science for decades. Many algorithms that can be classified as exact or approximate solutions have been proposed. Under the category of exact solutions, algorithms such as branch-and-bound and dynamic programming and the approaches obtained by combining these algorithms can be classified. Due to the fact that exact solutions require a long processing time, many approximate methods have been introduced for knapsack solution. In this research, deep Q-learning using models containing fully connected layers, attention, and transformer as function estimators were used to provide the solution for KP. We observed that deep Q-networks, which continued their training by observing the reward signals provided by the knapsack environment we developed, optimized the total reward gained over time. The results showed that our approaches give near-optimum solutions and work about 40 times faster than an exact algorithm using dynamic programming.Article Citation - WoS: 6Citation - Scopus: 10Beyond Rouge: a Comprehensive Evaluation Metric for Abstractive Summarization Leveraging Similarity, Entailment, and Acceptability(World Scientific Publ Co Pte Ltd, 2024) Briman, Mohammed Khalid Hilmi; Yıldız, Beytullah; Yildiz, Beytullah; Yıldız, BeytullahA vast amount of textual information on the internet has amplified the importance of text summarization models. Abstractive summarization generates original words and sentences that may not exist in the source document to be summarized. Such abstractive models may suffer from shortcomings such as linguistic acceptability and hallucinations. Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a metric commonly used to evaluate abstractive summarization models. However, due to its n-gram-based approach, it ignores several critical linguistic aspects. In this work, we propose Similarity, Entailment, and Acceptability Score (SEAScore), an automatic evaluation metric for evaluating abstractive text summarization models using the power of state-of-the-art pre-trained language models. SEAScore comprises three language models (LMs) that extract meaningful linguistic features from candidate and reference summaries and a weighted sum aggregator that computes an evaluation score. Experimental results show that our LM-based SEAScore metric correlates better with human judgment than standard evaluation metrics such as ROUGE-N and BERTScore.

