7 results
Search Results
Now showing 1 - 7 of 7
Master Thesis Farklı Çalışma Koşulları Altında Güneş ve Rüzgar Sistemleri için Mppt Tekniklerinin Karşılaştırmalı Analizi(2023) Ahmad, Muhammad Saeed; Sünter, SedatYenilenebilir enerji teknolojileri, fosil yakıtlara güvenin azalması, iklim değişimlerinin etkisini azaltması gibi sebeplerden dolayı son birkaç 10 yıldır önem kazanmıştır. Güneş, rüzgar ve su gibi yenilenebilir kaynaklar temiz ve sürdürülebilirdir. Bu teknolojiler son yıllarda önemli derecede dikkatleri üzerine çekmiştir. Yenilenebilir enerji teknolojileri birçok avantajlara sahip olmalarına rağmen fosil yakıtlarına göre oldukça düşük verimlere sahip olmaları önemli bir dezavantajdır. Sonuç olarak, yenilenebilir enerji sistemleri, fosil-yakıt temelli sistemlerin ürettiği miktardaki bir enerjiyi üretmek için daha fazla yere ve kaynağa ihtiyaç duyarlar. İlave olarak, yenilenebilir enerji sistemlerinin verimi hava ve diğer çevresel koşullara bağlı olarak değişebilir. Örnek olarak, güneş panelleri bulutlu günlerde daha az etkiliyken rüzgar türbinleri de sakin (rüzgarsız) havada daha az etkilidir. Bu durumlar yenilenebilir enerji sistemlerinin üreteceği enerji miktarını tahmin ve kontrol etmeyi zorlaştırabilir. Bu durum yenilenebilir enerji sistemlerinin şebekeye entegrasyonunu zorlaştırabilecektir. Maksimum güç noktası takip (MPPT) tekniklerinin kullanılmasıyla verimle ilgili problemlerin üstesinden gelinebilir. Bu teknikler, maksimum güç noktasında veya en çok gücü üreteceği noktada çalışmayı sağlayarak yenilenebilir enerji sistemlerinin performansını optimize etmek için kullanılır. Birkaç çeşit maksimum güç noktası izleme (MPPT) tekniği vardır, fakat genel olarak üç kategoride sınıflandırılırlar. : Basit, Yapay zeka (AI) ve hibrit. PO ve IC gibi basit MPPT teknikleri en temel olanlardır ve MPPT'de oldukça fazla kullanılır. Bu teknikler, maksimum güç noktasını sağlamada sistemin çalışma koşullarını sürekli olarak ayarlamak için oldukça basit algoritmalar kullanırlar. PSO ve ANN gibi AI-temelli MPPT teknikleri, yenilenebilir enerji sistemlerinin performansını optimize etmek için ileri algoritmalar ve makine öğrenme teknikleri kullanır. Bu teknikler çevresel koşulların değişimine kendilerini uyarlayabilir ve gerçek zamanda sistemin çalışma koşullarını sürekli olarak ayarlayabilirler. ANFIS ve PSO&PO gibi hibrit MPPT teknikleri, basit ve AI-temelli tekniklerinin bir birleşimidir. Bu teknikler maksimum güç noktasını hızlıca takip etmek için basit algoritmalar kullanır ve daha sonra gerçek zamanda sistemin çalışma koşullarının ince ayarı için AI-temelli teknikler kullanırlar. Hibrit enerji (güneş ve rüzgar) sistemleri için basit, AI, ML ve hibrit MPPT tekniklerinin karşılaştırmalı analizi bu tezde sunulmuştur. MPPT algoritmaları, verim, yerleşme zamanı, MPPT noktasında salınım ve algoritma karmaşıklığı gibi farklı metriklere dayanan verilere göre sıralanmıştır. PV sistem için, hibrit ve konvansiyonel tekniklere göre AI-temelli teknikler en iyi performansı göstermiştir. Rüzgar sistemi için ise, konvansiyonel ve AI tekniklerinin faydalarını birleştiren hibrit teknikler en iyi sonucu göstermiştir.Master Thesis Yapay Zeka ile Çeviri Çalışmalarının Geleceği(2019) Bacaksız, Azime Deniz; Erton, Halil İsmailDünyanın hızla globalleşmesi ve teknolojideki büyük buluşlar, iletişim için yeni olanaklar ortaya koymuştur. Kilometrelerce uzak mesafelerden haber almak ve haber göndermek, geçmişe oranla hızlanmış ve kolaylaşmıştır. Fakat, dil her zaman farklı toplumlar arasında bir engel olmuştur. Daha hızlı bir iletişim süreci gerektiren bu dünyada, teknoloji ve çeviri çalışmalarının bir araya gelmesi kaçınılmazdır. Zaman içinde çevirmenlerin sorumlulukları artarken, makineler vasıtasıyla kusursuz çeviriler elde etme fikri popülarite kazanmıştır. Makineli çeviri sistemlerinin bazı alanlarda kullanışlı olması, bu fikrin güçlenmesini sağlamıştır. Fakat, basit makineli çeviri sistemlerinin mevcut halleri çeviri iş alanının ihtiyaçlarını karşılamaya yetmemiştir. Bu sorunun çözümünün, insan algısı, mantığı ve sorun çözme becerisini taklit eden Yapay Zeka'yı bilgisayar temelli çeviri yazılımlarına entegre etmek olduğu düşünülmüştür. Bu çalışmada, Yapay Zeka entegre edilmiş güncel çeviri yazılımlarından üç tanesinin çeviri performansı belli kriterlere göre değerlendirilmiştir. Sonucunda, bu yazılımlara entegre edilen Yapay Zekanın güncel altyapısının ve durumunun çeviri iş alanının gereksinimlerini profesyonel anlamda karşılamaya yeterli olmadığı ortaya koyulmuştur.Doctoral Thesis Ağdüzeneklerde Makine Öğrenmesi Algoritmaları Yoluyla Örüntü Tanılaması ve Bağlantı Tahminlemesi: Kiracı Karması Vakası(2023) Asbaş, Caner; Tuzlukaya, ŞuleAğdüzeneğini derinlemesine anlamak ve yorumlamak, yüksek dinamizm ve eksik veri nedeniyle oldukça zorlu olabilmektedir. Dinamizm ve eksikliklerin üstesinden gelebilmek için ağdüzeneğindeki düğümler arası potansiyel veya olası bağları tahmin etme çabalarına bağlantı tahminlemesi, belirli patikaları tanımlama uygulamalarına ise örüntü tanılama denilmektedir. Bu çalışmanın temel amaçlarından ilki, dinamizm ve eksik veri nedeni ile meydana gelen ağdüzeneği değişimi ve evrimini, örüntü tanılama ve bağlantı tahminleme problemi olarak formüle ederek bir yapay zeka - makine öğrenmesi çözümü geliştirmektir. Alışveriş merkezi karmaşık ve büyük bir örgüt sistemi olarak tanımlanmaktadır. Kiracı karması ya da kiracı(lar) kümesi, alışveriş merkezindeki tür, boyut, konum, hizmet/ürün sınıflandırmaları benzeri parametreleri içerir. Alışveriş merkezinin hayatta kalması ve başarısının sürdürülebilir olması, öncelikle kiracı karmasının analiz edilmesi ve planlanması ile ilintilidir. Dolayısı ile, bu çalışmanın bir diğer önemli hedefi, alışveriş merkezindeki iç mekan yaya trafiğinin ağdüzeneği olarak modellenmesiyle kiracı karması probleminin ağdüzeneklerde örüntü tanılama ve bağlantı tahminleme görevi ve işlemi olarak tekrar formüle edilmesidir. Böylelikle, ziyaretçilerin sosyoekonomik ve demografik parametreleri ile, mağaza ve alışveriş merkezi tercihleri üzerinden kiracı karması için yapay sinir ağı modellemesine dayalı yeni bir çözüm yöntemi önerilmektedir. Çalışma kuramsal olarak, ağdüzenekleri ve ağdüzeneklerinin değişim - evrim mekanizmaları için analitik ve matematiksel bir çözüm sunmaktadır. Bu sayede, ağdüzeneğindeki bağlar, bağları kuran aktörlerin özelliklerine ve tercihlerine bağlı olarak analiz edilebilir, sınıflandırılabilir ve tanımlanabilir. Ayrıca, özellik ve tercihlere göre düğümler arasındaki olası veya potansiyel bağlar, yapay sinir ağları modellemesiyle tahmin edilebilmektedir. Çalışma aynı zamanda metot açısından, yapay zeka - makine öğrenmesi yöntemlerini, özellikle yapay sinir ağlarını, ağdüzeneklerde bağları kuran veya kiracı karmasında iç mekan yaya trafiğini üreten aktörlerin yan bilgileri temelinde hem ağdüzenek araştırmalarına hem kiracı karması problemine, yeni bir yaklaşımla entegre edilebilmiştir. Bu çalışmada önerilen ve geliştirilen yaklaşım ve metot ile ağdüzenek evrim ve değişim mekanizmaları ile kiracı karması problemi için en azı %90 olmak üzere ortalama %96 başarı sağlanmıştır.Master Thesis Frekans Alanında Görüntü Sınıflandırma için Konvolüsyonel Sinir Ağlarının Uygulanması(2024) Dağı, Göktuğ Erdem; Gökçay, Erhan; Tora, HakanBu tezde, Evrişimsel Sinir Ağları (CNN'ler) son yıllarda çeşitli görüntü işleme ve bilgisayarlı görme görevlerinde dikkate değer başarılar elde etmiştir. Geleneksel CNN'ler doğrudan uzaysal alan görüntüleri üzerinde çalışır. Bununla birlikte, Hızlı Fourier Dönüşümü (FFT) yoluyla elde edilen görüntülerin frekans alanı gösterimi, piksel değerlerinin ilişkisizleştirilmesi ve hesaplama karmaşıklığında potansiyel azalma gibi benzersiz avantajlar sunar. Bu tez, görüntü sınıflandırmasını ve tanıma doğruluğunu artırmak için FFT ile dönüştürülmüş görüntülerin CNN algoritmalarına girdi olarak kullanılmasının etkilerini araştırmayı amaçlamaktadır. Araştırma, FFT'nin teorik temellerinin ve özelliklerinin kapsamlı bir incelemesiyle başlıyor. Daha sonra CNN'ler için ön işleme ardışık düzenlerinde FFT'nin entegrasyonunu araştırıyor. Giriş görüntülerini uzamsal alandan frekans alanına dönüştürerek, CNN'lerin en önemli frekans bileşenlerine odaklanarak daha verimli öğrenebileceğini, dolayısıyla yakınsama oranlarını ve genel performansı potansiyel olarak iyileştirebileceğini varsayıyoruz. Bunun etkinliğini değerlendirmek için CIFAR-10 (Kanada İleri Araştırma Enstitüsü), MNIST (Modifiye Ulusal Standartlar ve Teknoloji Enstitüsü)-Digits ve MNIST-Fashion dahil olmak üzere çeşitli kıyaslama veri setleri kullanılarak deneyler gerçekleştirildi. yaklaşmak. FFT ile dönüştürülmüş görüntüler çeşitli CNN mimarilerine beslendi ve sonuçlar, geleneksel uzaysal alan girdileri kullanılarak elde edilenlerle karşılaştırıldı. Sınıflandırma doğruluğu, eğitim süresi ve hesaplamalı kaynak kullanımı gibi ölçümler titizlikle analiz edildi. Sonuçlar, FFT tabanlı ön işlemenin, özellikle veri kümelerinin yüksek frekanslı gürültü veya gereksiz bilgi içerdiği senaryolarda, sınıflandırma doğruluğunda iyileştirmelere yol açabileceğini göstermektedir. Ancak faydaların farklı veri kümeleri ve ağ mimarileri arasında farklılık göstermesi, FFT ön işlemenin etkililiğinin bağlama bağlı olabileceğini düşündürmektedir. Sonuç olarak bu tez, FFT ön işlemesinin CNN iş akışlarına dahil edilmesinin görüntü işleme görevlerini geliştirme konusunda umut vaat ettiğini göstermektedir. Bulgular, hem uzaysal hem de frekans alanı bilgisinden yararlanan hibrit modellerin geliştirilmesi ve FFT tabanlı tekniklerin diğer sinir ağı türlerine ve makine öğrenimi algoritmalarına uygulanması da dahil olmak üzere gelecekteki araştırmalar için yollar önermektedir. Bu çalışma, bilgisayarlı görme alanını geliştirmek için frekans alanı analizinin derin öğrenme metodolojileriyle nasıl sinerjik olarak entegre edilebileceğinin daha geniş bir şekilde anlaşılmasına katkıda bulunmaktadır.Master Thesis Ders Kitapları Pdf'lerine, Google Arama Motoruna ve Chatgpt'e Erişimin Öğrencilerin Bilgi Alınması ve İntihal Üzerindeki Etkisinin Araştırılması(2023) Dulaımı, Maryam; Toker, SacipBu çalışma, gelişmiş bir yapay zekâ konuşma aracısı olan ChatGPT'nin, Google Arama ve PDF belgeleri gibi geleneksel eğitim kaynaklarıyla karşılaştırıldığında öğrenci öğrenme sonuçlarının çeşitli yönleri üzerindeki etkisini araştırıyor. Altı temel alana odaklanan (Bulunabilirlik Hissi, Bilme Duygusu, Görevi Tamamlama İsteği, Bilişsel Öz Saygı, Gönderim Benzerliği ve Gönderim Yapay Zekâsı Benzerliği) bu araştırma, hem ChatGPT'yi hem de geleneksel teknolojileri kullanarak ödevleri tamamlayan üniversite öğrencilerini içeriyordu. Gerçek deneysel bir ön ve son test tasarımı kullanılarak katılımcılar rastgele dört gruba atandı: kontrol, e-ders kitabı, Google ve ChatGPT erişimi. Sonuçlar, ChatGPT'nin Bulunabilirlik ve Bilme Duygusunu önemli ölçüde iyileştirdiğini, öğrencilerin Görevleri Tamamlama İsteklerini artırdığını ve özellikle öğrenmenin ilk aşamalarında Bilişsel Benlik Saygısını geliştirdiğini göstermektedir. Bu bulgular, ChatGPT'nin eğitim sonuçlarını önemli ölçüde geliştirebilmesine rağmen, eğitim ortamlarına entegrasyonunun, faydaları optimize etmek ve olası dezavantajları azaltmak için dikkatli bir şekilde yönetilmesi gerektiğini göstermektedir.Master Thesis İhracat Miktarlarının Gelişmiş Zaman Serisi Tahmini için Transformatör Modellerinden Yararlanma(2024) Coşkun, Çağrı; Yıldız, Beytullah; Yazıcı, Aliİhracat miktarlarının tahmin edilmesi, küçük ve orta ölçekli işletmelerin (KOBİ'ler) küresel pazarlarda rekabetçi kalabilmesi için çok önemlidir. Geleneksel makine öğrenimi yöntemleri, finansal verilerin her şirket için yıllık olarak kaydedildiği, düzensiz dalgalanmalar ve uzun vadeli bağımlılıklar sergileyen çok değişkenli çoklu zaman serisi analizinin karmaşıklıklarıyla başa çıkmakta genellikle zorluk yaşar. Bu zorlukların üstesinden gelmek için, yıllık tekrar eden finansal verileri kullanarak ihracat miktarlarını tahmin etmek amacıyla Transformatör tabanlı bir yaklaşım sunuyoruz. Gelişmiş dikkat mekanizmalarına sahip Transformatör modeli, her bir işletmenin dokuz yıllık verisini içeren veri setimizde Rastgele Orman (Random Forest) ve Uzun Kısa Dönemli Bellek (LSTM) modellerinden daha iyi performans göstermiştir. Veri setindeki zaman noktalarının sayısı azaltıldığında Transformatör modelinde önemli bir performans düşüşü gözlemlenmiştir. Bununla beraber, genişletilmiş bir zaman serisi kullanıldığında performansının önemli ölçüde artması, başarılı ve etkili sonuçlar elde etmek için yeterince uzun, özellik açısından zengin zaman serilerine ve etkili özellik mühendisliğine ihtiyaç duyulduğunu açıkça göstermiştir.Doctoral Thesis Bilgisayarlı Görme ve Makine Öğrenme'ye Dayalı Olarak Trapan Mavisi Boya Dışlama Tabanlı Işık Mikroskoplarının Otomatize Hücre Sayarına Uyarlanabilir Dönüşüm Yöntemi(2017) Özkan, Akın; Özkan, Akın; İşgör, Sultan Belgin; Özkan, Akın; İşgör, Sultan Belgin; İşgör, Sultan Belgin; Şengül, Gökhan; Department of Electrical & Electronics Engineering; Chemical Engineering; Department of Electrical & Electronics Engineering; Chemical EngineeringHücre biyolojisi deneylerinin hemen hemen hepsi, hücre çoğalmasını ve yaşayabilirliğini izlemek için düzenli olarak hücrelerin sayımını içerir. Hücrenin miktarı ve kalitesinin bilgisi, deneysel standardizasyon ve toksisite etkisi tahmini için önemli parametrelerdir. Hücreleri saymak için hemositometre tabanlı elle sayma ve otomatik hücre sayacının kullanımı gibi iki farklı yaklaşım vardır. Yöntemlerden her ikisinin de avantajları ve dezavantajları vardır. Yüksek yatırım ve operasyonel maliyet otomatik hücre sayaçlarının geniş kullanımını sınırlar. Öte yandan, hemositometreye dayalı manuel hücre sayımı, hücre sayımının güvenilirliğinin, operatörün deneyimine ve yorgunluğuna büyük ölçüde bağlı olduğu gerçeği ile çeşitli sınırlamaları vardır. . Uzun zaman gereksinimi ve insan işgücü elle işleme sürecinin iki dezavantajı olarak sayılabilir. Bu tez, görüntü işleme ve makine öğrenmeyi esas alan dönüştürme metodolojisini tanımlayarak hücre sayımı için en gelişmiş alternatif metodu (çerçeve iskeleti) önermektedir. Önerilen yöntemin temelini, eksikliklerini azaltmak için ara katman karar yazılımı ekleyerek elle sayım yöntemine hemocytomer tabanlı otomatik saymanın uyarlanmasıdır. Buna ek olarak, önerilen yöntemimizi hücre sayımı (boyasız) ve hücre yaşayabilirliği analizi (boyalı) açısından test etmek için iki yeni veri seti toplanmıştır. Bu veri kümeleri, 'biyokimyasal.atilim.edu.tr/datasets/' adresinden kâr amacı gütmeyen herkesin kullanımına sunulmaktadır ve bu da bu araştırma alanındaki gelecek çalışmalara temel teşkil edecektir. Her iki veri kümesi, iki farklı türde kanser hücresi görüntüsü, yani, beyaz renkli promiyelositik lösemi (HL60) ve kronik miyelojenik lösemi (K562) içerir. Deneysel sonuçlarımızdan yola çıkarak, yöntemimiz HL60 ve K562 kanser hücreleri için sırasıyla geri çağırma skorları açısından % 92 ve % 74'e kadar ulaşmaktadır. Deney sonuçları, önerilen yöntemin mevcut hücre sayımı yaklaşımlarına güçlü bir alternatif olabileceğini de doğrular.
