2 results
Search Results
Now showing 1 - 2 of 2
Conference Object Citation - WoS: 10Citation - Scopus: 12Multi-Axial Ultrasonic Vibration-Assisted Machining of Inconel 718 Using Al2O3-CuO Hybrid Nanofluid MQL(Elsevier Science BV, 2024) Namlu, Ramazan Hakki; Lotfi, Bahram; Kilic, Sadik EnginInconel 718 is a widely used superalloy in the aerospace industry, owing to its exceptional creep and corrosion resistance, as well as its ability to retain strength at elevated temperatures. However, its machinability presents challenges due to its low thermal conductivity and high work hardening rate during conventional machining, resulting in inadequate surface quality. To address this issue, a recent technique known as Ultrasonic Vibration-Assisted Machining (UVAM) has emerged. UVAM involves applying high-frequency, low-amplitude vibrations to the cutting tool or workpiece. Additionally, Minimum Quantity Lubrication (MQL) has been considered as an alternative cooling technique to enhance machining performance. Optimizing the performance of UVAM can be achieved by employing various vibration axes. Additionally, the effectiveness of MQL can be enhanced through the utilization of nanofluids. This study investigates the combined application of multi-axis UVAM and Al2O3-CuO added Hybrid Nanofluid MQL (HNMQL) during the milling of Inconel 718. The evaluation parameters include surface roughness, topography, burr formations, and cutting forces. The results demonstrate that the simultaneous use of multi-axis UVAM and HNMQL significantly improves the machining performance of Inconel 718. This combination leads to better surface quality and overall process efficiency, offering promising prospects for the aerospace industry and other applications involving difficult-to-cut materials. (c) 2024 The Authors. Published by Elsevier B.V.Conference Object Effect of Tool Cavity Conditions on Damping, Chatter Mitigation, and Surface Quality in Internally Cooled Milling Tools(Elsevier B.V., 2025) Namlu, R.H.; Dogan, H.; Ozsoy, M.Chatter is a critical factor limiting productivity and efficiency in machining processes. Cutting tools significantly impact chatter stability, as they often serve as the most flexible component. The influence of cutting tools on chatter varies depending on their design and cooling mechanisms. Internally cooled cutting tools, commonly used in industrial applications, have the potential to exhibit distinct damping characteristics due to the presence of internal cavities, differentiating them from conventional solid tools. This study explores the effects of internally cooled milling cutting comparing an empty cavity cutting tool with a tool filled with viscous fluid. The primary objective is to evaluate how these conditions influence the damping of the machining system and their subsequent impact on surface quality, a key outcome sensitive to chatter. Surface topography and roughness measurements were taken after the experiments to assess changes in surface quality. The findings offer valuable insights into the role of internal cooling and fluid properties in not only chatter but also vibration suppressions in milling operations, highlighting their potential to enhance machining performance. © 2025 The Author(s).

