Effect of Tool Cavity Conditions on Damping, Chatter Mitigation, and Surface Quality in Internally Cooled Milling Tools

Loading...
Publication Logo

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier B.V.

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Chatter is a critical factor limiting productivity and efficiency in machining processes. Cutting tools significantly impact chatter stability, as they often serve as the most flexible component. The influence of cutting tools on chatter varies depending on their design and cooling mechanisms. Internally cooled cutting tools, commonly used in industrial applications, have the potential to exhibit distinct damping characteristics due to the presence of internal cavities, differentiating them from conventional solid tools. This study explores the effects of internally cooled milling cutting comparing an empty cavity cutting tool with a tool filled with viscous fluid. The primary objective is to evaluate how these conditions influence the damping of the machining system and their subsequent impact on surface quality, a key outcome sensitive to chatter. Surface topography and roughness measurements were taken after the experiments to assess changes in surface quality. The findings offer valuable insights into the role of internal cooling and fluid properties in not only chatter but also vibration suppressions in milling operations, highlighting their potential to enhance machining performance. © 2025 The Author(s).

Description

Keywords

Chatter, Internally Cooled Tools, Surface Quality

Fields of Science

Citation

WoS Q

N/A

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Procedia CIRP -- 20th CIRP Conference on Modeling of Machining Operations in Mons, CIRP CMMO 2025 -- 22 May 2025 through 23 May 2025 -- Mons -- 208065

Volume

133

Issue

Start Page

215

End Page

220

Collections

PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 2

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals