8 results
Search Results
Now showing 1 - 8 of 8
Article Citation - WoS: 21Citation - Scopus: 20Nonlinear Optical Absorption Characteristics of Pbmoo4 Single Crystal for Optical Limiter Applications(Elsevier, 2022) Pepe, Yasemin; Isik, Mehmet; Karatay, Ahmet; Gasanly, Nizami; Elmali, AyhanMolybdate materials take great interest due to their photocatalytic and optoelectronic applications. In this report, PbMoO4 single crystal, one of the member of molybdate materials, is grown by Czochralski technique and the change of nonlinear absorption characteristic depending on the input intensity was reported. Linear absorption analysis revealed the band gap energy and Urbach energy as to be 3.12 and 0.52 eV, respectively. Nonlinear absorption characteristics of the PbMoO4 single crystal was examined with the open aperture (OA) Z-scan experiments at 532 nm excitation wavelength under various input intensities. Fitting results of the OA Z-scan experiments indicated that PbMoO4 single crystal has nonlinear absorption (NA) behavior, and NA coefficient (beta(eff)) increased from 7.11 x 10(-8) to 1.96 x 10(-7) m/W with increasing input intensity. This observation was associated with the increase of the contribution of the free carrier absorption to the NA with the generation of more excited electrons with increasing input intensity. At the 532 nm excitation wavelength (2.32 eV), the dominant mechanisms were revealed as one photon and free carrier absorptions. The optical limiting threshold of the PbMoO4 single crystal was obtained to be 4.91 mJ/cm(2). The reported results indicated that PbMoO4 single crystal can be a good optical limiter in the visible wavelength region due to its effective NA behavior.Article Citation - WoS: 28Citation - Scopus: 30Composition-tuned band gap energy and refractive index in GaSxSe1-x layered mixed crystals(Elsevier Science Sa, 2017) Isik, Mehmet; Gasanly, NizamiTransmission and reflection measurements on GaSxSe1-x mixed crystals (0 <= x <= 1) were carried out in the 400-1000 nm spectral range. Band gap energies of the studied crystals were obtained using the derivative spectra of transmittance and reflectance. The compositional dependence of band gap energy revealed that as sulfur (selenium) composition is increased (decreased) in the mixed crystals, band gap energy increases quadratically from 1.99 eV (GaSe) to 2.55 eV (GaS). Spectral dependencies of refractive indices of the mixed crystals were plotted using the reflectance spectra. It was observed that refractive index decreases nearly in a linear behavior with increasing band gap energy for GaSxSe1-x mixed crystals. Moreover, the composition ratio of the mixed crystals was obtained from the energy dispersive spectroscopy measurements. The atomic compositions of the studied crystals are well-matched with composition x increasing from 0 to 1 by intervals of 0.25. (C) 2016 Elsevier B.V. All rights reserved.Article Citation - WoS: 2Determination of Optical Constants and Temperature Dependent Band Gap Energy of Gas0.25se0.75< Single Crystals(Natl inst Optoelectronics, 2017) Isik, M.; Gasanly, N.Optical properties of GaS0.25Se0.75 single crystals were investigated by means of temperature -dependent transmission and room temperature reflection experiments. Derivative spectrophotometry analysis showed that indirect band gap energies of the crystal increase from 2.13 to 2.26 eV as temperature is decreased from 300 to 10 K. Temperature dependence of band gap energy was fitted under the light of theoretical expression. The band gap energy change with temperature and absolute zero value of the band gap energy were found from the analyses. The Wemple-DiDomenico single effective oscillator model and Sellmeier oscillator model were applied to the spectral dependence of room temperature refractive index to find optical parameters of the GaS0.25Se0.75 crystal. Chemical composition of the crystal was determined using the energy dispersive spectral measurements.Article Citation - Scopus: 3Determination of optical constants and temperature dependent band gap energy of GaS0.25Se0.75 single crystals(National Institute of Optoelectronics, 2017) Isik,M.; Gasanly,N.Optical properties of GaS0.25Se0.75 single crystals were investigated by means of temperature-dependent transmission and room temperature reflection experiments. Derivative spectrophotometry analysis showed that indirect band gap energies of the crystal increase from 2.13 to 2.26 eV as temperature is decreased from 300 to 10 K. Temperature dependence of band gap energy was fitted under the light of theoretical expression. The band gap energy change with temperature and absolute zero value of the band gap energy were found from the analyses. The Wemple-DiDomenico single effective oscillator model and Sellmeier oscillator model were applied to the spectral dependence of room temperature refractive index to find optical parameters of the GaS0.25Se0.75 crystal. Chemical composition of the crystal was determined using the energy dispersive spectral measurements.Article Citation - WoS: 8Citation - Scopus: 10Temperature Effects on Optical Characteristics of Cdse Thin Films(Elsevier Sci Ltd, 2021) Gullu, H. H.; Isik, M.; Surucu, O.; Gasanly, N. M.; Parlak, M.CdSe is one of the significant members of II-VI type semiconducting family and it has a wide range of technological applications in which optoelectronic devices take a special position. The present paper reports the structural and optical characteristics of thermally evaporated CdSe thin films. XRD pattern exhibited preferential orientation along (111) plane while atomic composition analyses resulted in the ratio of Cd/Se as closer to 1.0. Temperature-dependent band gap characteristics of CdSe thin films were investigated for the first time by carrying out transmission experiments in the 10-300 K range. The analyses showed that direct band gap energy of the compound decreases from 1.750 (at 10 K) to 1.705 eV (at 300 K). Varshni model was successfully applied to the temperature-band gap energy dependency and various optical constants were determined. Raman spectrum of CdSe thin films was also presented to understand the vibrational characteristics of the compound. The present paper would provide worthwhile data to researchers especially studying on optoelectronic device applications of CdSe thin films.Article Citation - WoS: 25Citation - Scopus: 25Temperature-Tuned Band Gap Properties of Mos2 Thin Films(Elsevier, 2020) Surucu, O.; Isik, M.; Gasanly, N. M.; Terlemezoglu, M.; Parlak, M.MoS2 is one of the fascinating members of transition metal dichalcogenides and has attracted great attention due to its various optoelectronic device applications and its characteristic as two-dimensional material. The present paper reports the structural and temperature tuned optical properties of MoS2 thin films grown by RF magnetron sputtering technique. It was observed that the atomic composition ratio of Mo:S was nearly equal to 1:2 and the deposited thin films have hexagonal crystalline structure exhibiting Raman peaks around 376 and 410 cm(-1). The band gap energies were determined as 1.66 and 1.71 eV at 300 and 10 K, respectively and temperature dependency of band gap energy was analyzed by means of Varshni and O'Donnell-Chen models. (C) 2020 Elsevier B.V. All rights reserved.Article Citation - WoS: 20Citation - Scopus: 21Temperature-Tuned Band Gap Characteristics of Inse Layered Semiconductor Single Crystals(Elsevier Sci Ltd, 2020) Isik, M.; Gasanly, N. M.Layered structured InSe has attracted remarkable attention due to its effective characteristics utilized especially in optoelectronic device technology. This point directs researchers to investigate optical properties of InSe in great detail. The temperature dependent band gap characteristics of InSe and analyses performed on this dependency have been rarely studied in literature. Here, temperature-dependent transmission and room temperature reflection experiments were performed on InSe layered single crystals. The band gap energy was found around 1.22 eV at room temperature and 1.32 eV at 10 K. The temperature-gap energy dependency was analyzed using Varshni and O'Donnell-Chen models to reveal various optical parameters of the crystal. The structural characteristics; crystalline parameters like lattice constants, lattice strain, dislocation density and atomic compositions of InSe were also determined from the analyses of XRD and EDS measurements.Article Citation - WoS: 8Citation - Scopus: 9Temperature-Dependent Optical Properties of Tio2 Nanoparticles: a Study of Band Gap Evolution(Springer, 2023) Isik, Mehmet; Delice, Serdar; Gasanly, NizamiIn this study, we present the first comprehensive investigation of the temperature-dependent band gap energy of anatase TiO2 nanoparticles, utilizing transmission measurements in the range of 10-300 K. X-ray diffraction pattern exhibited nine peaks related to tetragonal crystal structure. Scanning electron microscope image showed that the nanoparticles with the dimensions of 25-50 nm were found as micrometer sized agglomerated. When the spectrum obtained as a result of the transmission measurements was analyzed, it was seen that the band gap energy decreased from 3.29(5) to 3.26(6) eV as the temperature was increased from 10 to 300 K. Temperature-band gap dependence was analyzed using Varshni and O'Donnell-Chen optical models and optical parameters of the TiO2 nanoparticles like absolute zero band gap energy, rate of change of band gap with temperature and average phonon energy were reported.

