Search Results

Now showing 1 - 10 of 85
  • Article
    Citation - WoS: 42
    Citation - Scopus: 47
    Modified Form of Liu-michel's Criterion for Global Asymptotic Stability of Fixed-Point State-Space Digital Filters Using Saturation Arithmetic
    (Ieee-inst Electrical Electronics Engineers inc, 2006) Singh, Vimal
    A criterion for the global asymptotic stability of fixed-point state-space digital filters using saturation arithmetic was previously given by Liu and Michel. A modified form of their criterion is presented.
  • Article
    Citation - WoS: 102
    Citation - Scopus: 113
    A 1.6-Mm, Metal Tube Ultrasonic Motor
    (Ieee-inst Electrical Electronics Engineers inc, 2003) Cagatay, S; Koc, B; Uchino, K
    A miniaturized metal tube ultrasonic motor, the dimensions of which are 1.6 mm in diameter and 6 rum in length, was developed. Two flattened surfaces with 90-degrees were ground on the outer surface of the stator. Two PZT-based piezoelectric ceramics were bonded onto these flat surfaces. The asymmetrical surface of the stator developed the split of the two degenerated orthogonal bending modes, resulting in a wobble motion. The working frequency of the 1.6-mm motor with 6 mm in length was 130 kHz. A torque of 0.5 mNm was reached at a maximum power of 45 mW with a speed of 45 rad/sec. The maximum efficiency was 16%.
  • Article
    Citation - WoS: 30
    Citation - Scopus: 34
    Discrete Time Shock Models in a Markovian Environment
    (Ieee-inst Electrical Electronics Engineers inc, 2016) Eryilmaz, Serkan
    This paper deals with two different shock models in a Markovian environment. We study a system from a reliability point of view under these two shock models. According to the first model, the system fails if the cumulative shock magnitude exceeds a critical level, while in the second model the failure occurs when the cumulative effect of the shocks in consecutive periods is above a critical level. The shock occurrences over discrete time periods are assumed to be Markovian. We obtain expressions for the failure time distributions of the system under the two model. Illustrative computational results are presented for the survival probabilities and mean time to failure values of the system.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Analysis of the Junction Properties of C/Gase0.5< Back-To Schottky-Type Photodetectors
    (Ieee-inst Electrical Electronics Engineers inc, 2015) Khanfar, Hazem K.; Qasrawi, Atef F.; Gasanly, Nizami M.
    In this paper, a C/GaSe0.5S0.5/C metal-semiconductor-metal photodetector is suggested and described. The device is explored by means of current-voltage and capacitance-voltage (C-V) characteristics under different photoexcitation intensities. It was observed that the design of the back-to-back Schottky device has reduced the dark current of the normal Ag/GaSe0.5S0.5/C Schottky diode by 13 times and increased the photosensitivity from 3.8 to similar to 2.1x10(3). The device exhibited a barrier height of 0.842 eV in the dark. The barrier height is reduced via photoexcitation. In addition, the C/GaSe0.5S0.5/C device exhibited an ON/OFF switching property from low injection OFF to high injection ON at specific biasing voltages. This voltage decreased with the increasing illumination intensity. On the other hand, the C-V characteristics of the device, which was recorded for an ac input signal with 100 MHz at different levels of photoexcitation shifted up when the intensity of light was increased. When the same measurement was repeated at signal frequency of 1.6 GHz, the C-V characteristics reflected a different level of capacitance response. These features of C/GaSe0.5S0.5/C photodetectors nominate the device to be used as multipurpose optical switches being suitable to store different levels of electromagnetic energy at microwave frequencies.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 9
    Mixture Representations for Three-State Systems With Three-State Components
    (Ieee-inst Electrical Electronics Engineers inc, 2015) Eryilmaz, Serkan
    This paper is concerned with dynamic reliability modeling of three-state systems consisting of three-state s-independent components. The components and the systems are assumed to be in three states: perfect functioning, partial performance, and complete failure. Survival functions of such systems are studied in different state subsets. It is shown that the survival function of a three-state system with a general structure can be represented as a mixture of the survival functions of the three-state k-out-of-n:G systems. The results are illustrated for the three-state consecutive-k-out-of-n:G systems whose components degrade according to a Markov process.
  • Article
    Citation - WoS: 31
    Citation - Scopus: 40
    Variational Mode Decomposition-Based Radio Frequency Fingerprinting of Bluetooth Devices
    (Ieee-inst Electrical Electronics Engineers inc, 2019) Aghnaiya, Alghannai; Ali, Aysha M.; Kara, Ali
    Radio frequency fingerprinting (RFF) is based on identification of unique features of RF transient signals emitted by radio devices. RF transient signals of radio devices are short in duration, non-stationary and nonlinear time series. This paper evaluates the performance of RF fingerprinting method based on variational mode decomposition (VMD). For this purpose, VMD is used to decompose Bluetooth (BT) transient signals into a series of band-limited modes, and then, the transient signal is reconstructed from the modes. Higher order statistical (HOS) features are extracted from the complex form of reconstructed transients. Then, Linear Support Vector Machine (LVM) classifier is used to identify BT devices. The method has been tested experimentally with BT devices of different brands, models and series. The classification performance shows that VMD based RF fingerprinting method achieves better performance (at least 8% higher) than time-frequency-energy (TFED) distribution based methods such as Hilbert-Huang Transform. This is demonstrated with the same dataset but with smaller number of features (nine features) and slightly lower (2-3 dB) SNR levels.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 10
    Evaluation of Ten Open-Source Eye-Movement Classification Algorithms in Simulated Surgical Scenarios
    (Ieee-inst Electrical Electronics Engineers inc, 2019) Dalveren, Gonca Gokce Menekse; Cagiltay, Nergiz Ercil
    Despite providing several insights into visual attention and evidence regarding certain brain states and psychological functions, classifying eye movements is a highly demanding process. Currently, there are several algorithms to classify eye movement events which use different approaches. However, to date, only a limited number of studies have assessed these algorithms under specific conditions, such as those required for surgical training programmes. This study presents an investigation of ten open-source eye-movement classification algorithms using the Eye Tribe eye-tracker. The algorithms were tested on the eye-movement records obtained from 23 surgical residents, who performed computer-based surgical simulation tasks under different hand conditions. The aim was to offer data for the improvement of surgical training programmes. According to the results, due to the different classification methods and default threshold values, the ten algorithms produced different results. Considering the fixation duration, the only common event for all of the investigated algorithms, the binocular-individual threshold (BIT) algorithm resulted in a different clustering compared to the other algorithms. Based on the other set of common events, three clusters were determined by eight algorithms (except BIT and event detection (ED)), distinguishing dispersion-based, velocity-based and modified versions of velocity-based algorithms. Accordingly, it was concluded that dispersion-based and velocity-based algorithms provided different results. Additionally, as it individually specifies the threshold values for the eye-movement data, when there is no consensus about the threshold values to be set, the BIT algorithm can be selected. Especially for such cases like simulation-based surgical skill-training, the use of individualised threshold values in the BIT algorithm can be more beneficial in classifying the raw eye data and thus evaluating the individual progress levels of trainees based on their eye movement behaviours. In conclusion, the threshold values had a critical effect on the algorithm results. Since default values may not always be suitable for the unique features of different data sets, guidelines should be developed to indicate how the threshold values are set for each algorithm.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 16
    Joint Reliability Importance in Coherent Systems With Exchangeable Dependent Components
    (Ieee-inst Electrical Electronics Engineers inc, 2016) Eryilmaz, Serkan; Oruc, Ozlem Ege; Oger, Volkan
    In this paper, a general formula for computing the joint reliability importance of two components is obtained for a binary coherent system that consists of exchangeable dependent components. Using the new formula, the joint reliability importance can be easily calculated if the path sets of the system are known. As a special case, an expression for the joint reliability importance of two components is also obtained for a system consisting of independent and identical components. Illustrative numerical results are presented to compare the joint reliability importance of two components in the bridge system for the two cases when the components are exchangeable dependent and when the components are independent and identical.
  • Article
    Citation - WoS: 33
    Citation - Scopus: 41
    Visual and Auditory Data Fusion for Energy-Efficient and Improved Object Recognition in Wireless Multimedia Sensor Networks
    (Ieee-inst Electrical Electronics Engineers inc, 2019) Koyuncu, Murat; Yazici, Adnan; Civelek, Muhsin; Cosar, Ahmet; Sert, Mustafa
    Automatic threat classification without human intervention is a popular research topic in wireless multimedia sensor networks (WMSNs) especially within the context of surveillance applications. This paper explores the effect of fusing audio-visual multimedia and scalar data collected by the sensor nodes in a WMSN for the purpose of energy-efficient and accurate object detection and classification. In order to do that, we implemented a wireless multimedia sensor node with video and audio capturing and processing capabilities in addition to traditional/ordinary scalar sensors. The multimedia sensors are kept in sleep mode in order to save energy until they are activated by the scalar sensors which are always active. The object recognition results obtained from video and audio applications are fused to increase the object recognition performance of the sensor node. Final results are forwarded to the sink in text format, and this greatly reduces the size of data transmitted in network. Performance test results of the implemented prototype system show that the fusing audio data with visual data improves automatic object recognition capability of a sensor node significantly. Since auditory data requires less processing power compared to visual data, the overhead of processing the auditory data is not high, and it helps to extend network lifetime of WMSNs.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Pseudospectral Time Domain Method Implementation Using Finite Difference Time Stepping
    (Ieee-inst Electrical Electronics Engineers inc, 2018) Gunes, Ahmet; Aksoy, Serkan
    Lagrange interpolation polynomials-based Cheby-shev pseudospectral time domain (CPSTD) method is an efficient time domain solver for Maxwell equations. Although it has the lowest interpolation error among pseudospectral time domain methods, time derivatives must be calculated using higher order time derivative schemes, such as the Runge-Kutta method. The higher order time derivative methods slow down the computation speed at each step by several folds. In this letter, we show that central finite differences can be used for implementation of time derivatives in CPSTD method. Results are verified by a resonator problem.