4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 12Citation - Scopus: 12A Systematic Approach To Optimizing Energy-Efficient Automated Systems With Learning Models for Thermal Comfort Control in Indoor Spaces(Mdpi, 2023) Erisen, SerdarEnergy-efficient automated systems for thermal comfort control in buildings is an emerging research area that has the potential to be considered through a combination of smart solutions. This research aims to explore and optimize energy-efficient automated systems with regard to thermal comfort parameters, energy use, workloads, and their operation for thermal comfort control in indoor spaces. In this research, a systematic approach is deployed, and building information modeling (BIM) software and energy optimization algorithms are applied at first to thermal comfort parameters, such as natural ventilation, to derive the contextual information and compute the building performance of an indoor environment with Internet of Things (IoT) technologies installed. The open-source dataset from the experiment environment is also applied in training and testing unique black box models, which are examined through the users' voting data acquired via the personal comfort systems (PCS), thus revealing the significance of Fanger's approach and the relationship between people and their surroundings in developing the learning models. The contextual information obtained via BIM simulations, the IoT-based data, and the building performance evaluations indicated the critical levels of energy use and the capacities of the thermal comfort control systems. Machine learning models were found to be significant in optimizing the operation of the automated systems, and deep learning models were momentous in understanding and predicting user activities and thermal comfort levels for well-being; this can optimize energy use in smart buildings.Article Citation - Scopus: 88Is Chatgpt Accurate and Reliable in Answering Questions Regarding Head and Neck Cancer?(Frontiers Media SA, 2023) Kuşcu,O.; Pamuk,A.E.; Sütay Süslü,N.; Hosal,S.Background and objective: Chat Generative Pre-trained Transformer (ChatGPT) is an artificial intelligence (AI)-based language processing model using deep learning to create human-like text dialogue. It has been a popular source of information covering vast number of topics including medicine. Patient education in head and neck cancer (HNC) is crucial to enhance the understanding of patients about their medical condition, diagnosis, and treatment options. Therefore, this study aims to examine the accuracy and reliability of ChatGPT in answering questions regarding HNC. Methods: 154 head and neck cancer-related questions were compiled from sources including professional societies, institutions, patient support groups, and social media. These questions were categorized into topics like basic knowledge, diagnosis, treatment, recovery, operative risks, complications, follow-up, and cancer prevention. ChatGPT was queried with each question, and two experienced head and neck surgeons assessed each response independently for accuracy and reproducibility. Responses were rated on a scale: (1) comprehensive/correct, (2) incomplete/partially correct, (3) a mix of accurate and inaccurate/misleading, and (4) completely inaccurate/irrelevant. Discrepancies in grading were resolved by a third reviewer. Reproducibility was evaluated by repeating questions and analyzing grading consistency. Results: ChatGPT yielded “comprehensive/correct” responses to 133/154 (86.4%) of the questions whereas, rates of “incomplete/partially correct” and “mixed with accurate and inaccurate data/misleading” responses were 11% and 2.6%, respectively. There were no “completely inaccurate/irrelevant” responses. According to category, the model provided “comprehensive/correct” answers to 80.6% of questions regarding “basic knowledge”, 92.6% related to “diagnosis”, 88.9% related to “treatment”, 80% related to “recovery – operative risks – complications – follow-up”, 100% related to “cancer prevention” and 92.9% related to “other”. There was not any significant difference between the categories regarding the grades of ChatGPT responses (p=0.88). The rate of reproducibility was 94.1% (145 of 154 questions). Conclusion: ChatGPT generated substantially accurate and reproducible information to diverse medical queries related to HNC. Despite its limitations, it can be a useful source of information for both patients and medical professionals. With further developments in the model, ChatGPT can also play a crucial role in clinical decision support to provide the clinicians with up-to-date information. Copyright © 2023 Kuşcu, Pamuk, Sütay Süslü and Hosal.Article Citation - WoS: 9Citation - Scopus: 20Business Intelligence Strategies, Best Practices, and Latest Trends: Analysis of Scientometric Data From 2003 To 2023 Using Machine Learning(Mdpi, 2023) Gurcan, Fatih; Ayaz, Ahmet; Dalveren, Gonca Gokce Menekse; Derawi, MohammadThe widespread use of business intelligence products, services, and applications piques the interest of researchers in this field. The interest of researchers in business intelligence increases the number of studies significantly. Identifying domain-specific research patterns and trends is thus a significant research problem. This study employs a topic modeling approach to analyze domain-specific articles in order to identify research patterns and trends in the business intelligence field over the last 20 years. As a result, 36 topics were discovered that reflect the field's research landscape and trends. Topics such as "Organizational Capability", "AI Applications", "Data Mining", "Big Data Analytics", and "Visualization" have recently gained popularity. A systematic taxonomic map was also created, revealing the research background and BI perspectives based on the topics. This study may be useful to researchers and practitioners interested in learning about the most recent developments in the field. Topics generated by topic modeling can also be used to identify gaps in current research or potential future research directions.Article Citation - WoS: 5Citation - Scopus: 6Deployment and Implementation Aspects of Radio Frequency Fingerprinting in Cybersecurity of Smart Grids(Mdpi, 2023) Awan, Maaz Ali; Dalveren, Yaser; Catak, Ferhat Ozgur; Kara, AliSmart grids incorporate diverse power equipment used for energy optimization in intelligent cities. This equipment may use Internet of Things (IoT) devices and services in the future. To ensure stable operation of smart grids, cybersecurity of IoT is paramount. To this end, use of cryptographic security methods is prevalent in existing IoT. Non-cryptographic methods such as radio frequency fingerprinting (RFF) have been on the horizon for a few decades but are limited to academic research or military interest. RFF is a physical layer security feature that leverages hardware impairments in radios of IoT devices for classification and rogue device detection. The article discusses the potential of RFF in wireless communication of IoT devices to augment the cybersecurity of smart grids. The characteristics of a deep learning (DL)-aided RFF system are presented. Subsequently, a deployment framework of RFF for smart grids is presented with implementation and regulatory aspects. The article culminates with a discussion of existing challenges and potential research directions for maturation of RFF.
