4 results
Search Results
Now showing 1 - 4 of 4
Article Citation - WoS: 1Citation - Scopus: 1Principal and Nonprincipal Solutions of Impulsive Dynamic Equations: Leighton and Wong Type Oscillation Theorems(Springer, 2023) Zafer, A.; Akgol, S. DogruPrincipal and nonprincipal solutions of differential equations play a critical role in studying the qualitative behavior of solutions in numerous related differential equations. The existence of such solutions and their applications are already documented in the literature for differential equations, difference equations, dynamic equations, and impulsive differential equations. In this paper, we make a contribution to this field by examining impulsive dynamic equations and proving the existence of such solutions for second-order impulsive dynamic equations. As an illustration, we prove the famous Leighton and Wong oscillation theorems for impulsive dynamic equations. Furthermore, we provide supporting examples to demonstrate the relevance and effectiveness of the results.Master Thesis Zaman Skalalarında Yüksek Mertebeden Çok Noktalı İmpalsif Sınır Değer Problemlerinin Çözümlerinin Varlığı(2022) Kuş, Murat Eymen; Akgöl, Sibel Doğru; Georgıev, Svetlin G.Bu tezde, çok noktalı yüksek mertebeden impalsif sınır değer problemlerinin zaman skalalarında çözümlerinin bulunması için yeterli koşulları araştırdık. Özellikle, üçüncü mertebeden impalsif sınır değer problemlerinin bir sınıfı ve 2n + 1, n ≥ 1 mertebeden bir impalsif sınır değer problemi sınıfı incelenmiştir. Bölüm 1'de zaman skalası ve bazı ilgili kavramların tanımları ile birlikte örnekler verilmiştir. Sonrasında tezde kullanılan sabit nokta teoremleri verilmiştir. Bölüm 2, üçüncü mertebeden çok noktalı dinamik impalsif sınır değer problemlerinin çözümlerinin varlığına ayrılmıştır. Bölüm 3'de tek sayı mertebeli çok noktalı dinamik impalsif sınır değer problemlerinin çözümlerinin varlığına odaklanılmıştır. Son olarak, Bölüm 4'te kısa bir sonuc¸ verilmiştir. Bu tezdeki sonuçların bir kısmı Georgian Mathematical Journal dergisinde basılmış, bir kısmı da Miskolc Mathematical Notes dergisinde basılmak üzere kabul edilmiştir.Master Thesis Zaman skalasında interpolasyon(2022) Jaddoa, Najlaa Abd Zaıd Jaddoa; Adıgüzel, Rezan Sevinik; Erhan, İnciBu tezde, zaman skalasında interpolasyon konusunu inceledik. Keyfi bir zaman skalası üzerinde, Lagrange, sigma-Lagrange, Hermite, sigma-Hermite, Newton ve sigma-Newton polinomlarını tanımladık. Bölünen ve sigma-bölünen farkları tanımlayarak, verilen bir veri kümesi için, Hermite polinomunu kolay yoldan elde etmek amacıyla bölünen farklar tablosu oluşturduk. Verilen bir veri kümesini, zaman skalasının yapısına bağlı olarak polinom olmayabilen fonksiyonlar olan sigma-polinomları ile temsil etmek (interpole etmek) alışılmadık bir yöntemdir. Bu şekilde, zaman skalasında interpolasyon için farklı bir bakış açısı sunmaktayız. Çeşitli zaman skalalarında birçok örnek inceledik. Bu örnekler Matlab ile elde edilen sayısal hesaplamalar ve ilgili grafikler ile desteklenmiştir.Article Citation - WoS: 1Citation - Scopus: 1Prescribed Asymptotic Behavior of Nonlinear Dynamic Equations Under Impulsive Perturbations(Springer Basel Ag, 2024) Zafer, Agacik; Dogru Akgol, SibelThe asymptotic integration problem has a rich historical background and has been extensively studied in the context of ordinary differential equations, delay differential equations, dynamic equations, and impulsive differential equations. However, the problem has not been explored for impulsive dynamic equations due to the lack of essential tools such as principal and nonprincipal solutions, as well as certain compactness results. In this work, by making use of the principal and nonprincipal solutions of the associated linear dynamic equation, recently obtained in [Acta Appl. Math. 188, 2 (2023)], we investigate the asymptotic integration problem for a specific class of nonlinear impulsive dynamic equations. Under certain conditions, we prove that the given impulsive dynamic equation possesses solutions with a prescribed asymptotic behavior at infinity. These solutions can be expressed in terms of principal and nonprincipal solutions as in differential equations. In addition, the necessary compactness results are also established. Our findings are particularly valuable for better understanding the long-time behavior of solutions, modeling real-world problems, and analyzing the solutions of boundary value problems on semi-infinite intervals.
