2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 5Citation - Scopus: 5Structural and Electrical Characterizations of the as Grown and Annealed Au/Mοo3< Bandpass Filters(Wiley, 2019) Khanfar, Hazem K.; Qasrawi, Atef; Daraghmeh, Masa; Abusaa, MuayadIn this work, the structural, morphology, and electrical properties of two 500 nm thick molybdenum trioxide layers that are sandwiched with indium slab of thickness of 200 nm (MoO3/In/MoO3 [MIM]) to form a bandpass filter are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and impedance spectroscopy techniques, respectively. The MIM films which coated onto Au thin film substrates by the thermal evaporation technique under vacuum pressure of 10(-5) mbar was post annealed at 250 degrees C in air atmosphere. While the XRD analysis revealed polycrystalline hexagonal lattice structure of the Au/MLM samples, the SEM and EDS analysis displayed grains of sizes of 350 nm and stoichiometric structure of MoO3. Electrically, indium layer which caused n-type conduction with donor level of 299 meV, forced the material to exhibit negative capacitance (NC) effect at high frequencies (above 1.1 GHz). The impedance spectroscopy which was recorded in the frequency domain of 0.01 to 1.80 GHz, also revealed low pass and high pass filters characteristics in the low and high frequency domains, respectively. The annealing of the Au/MIM samples, decreased the crystallite and grain sizes and increased the microstrain, the defect density and the stacking faults. Small amount of excess oxygen and some indium deficiency are observed upon annealing. In addition, the annealing shifted the donor level closer to the bottom of the conduction band and inverted the NC effect from high to low frequency regions. The study indicates the applicability of the Au/MIM/C structures as microwave cavities and parasitic capacitance cancellers in electronic circuits.Article Citation - WoS: 3Citation - Scopus: 4In Situ Observation of Heat-Assisted Hexagonal-Orthorhombic Phase Transitions in Se/Ag Sandwiched Structures and Their Effects on Optical Properties(Springer, 2019) Qasrawi, A. F.; Aloushi, Hadil D.In this work, two selenium layers of 500-nm thickness, nano-sandwiched with Ag nanosheets of 100-nm thickness (Se/Ag/Se), are subjected to in situ monitoring of the structural and optical transitions during heating over a temperature range of 303-473 K by x-ray diffraction and ultraviolet-visible light spectrophotometry, respectively. The Se/Ag/Se thin films are observed to exhibit a transformation from an amorphous to a polycrystalline phase at 343 K. Increasing the temperature above 363 K enhances the crystallinity of the hexagonal phase, reduces the microstrain, increases the crystallite size and reduces the defect density. Accordingly, the optical absorption spectra are redshifted upon heating. The redshift is accompanied by a transition in the energy band gap from 2.03 eV to 1.85 eV as the material structural phase is transformed from amorphous to polycrystalline. Increasing the temperature causes the energy band gap to shrink. Another permanent phase transformation from hexagonal to orthorhombic is detected when the Se/Ag/Se system is allowed to cool. Scanning electron microscopy images show that the phase transformation converts the grains of Se/Ag/Se films from wire-shaped to nanotubes. The second phase transformation causes a blueshift in the absorption coefficient spectra and increases the energy band gap. The structural and optical parameter enhancements achieved via heating render the Se thin films more suitable for optoelectronic applications.

