In Situ Observation of Heat-Assisted Hexagonal-Orthorhombic Phase Transitions in Se/Ag/Se Sandwiched Structures and Their Effects on Optical Properties

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

In this work, two selenium layers of 500-nm thickness, nano-sandwiched with Ag nanosheets of 100-nm thickness (Se/Ag/Se), are subjected to in situ monitoring of the structural and optical transitions during heating over a temperature range of 303-473 K by x-ray diffraction and ultraviolet-visible light spectrophotometry, respectively. The Se/Ag/Se thin films are observed to exhibit a transformation from an amorphous to a polycrystalline phase at 343 K. Increasing the temperature above 363 K enhances the crystallinity of the hexagonal phase, reduces the microstrain, increases the crystallite size and reduces the defect density. Accordingly, the optical absorption spectra are redshifted upon heating. The redshift is accompanied by a transition in the energy band gap from 2.03 eV to 1.85 eV as the material structural phase is transformed from amorphous to polycrystalline. Increasing the temperature causes the energy band gap to shrink. Another permanent phase transformation from hexagonal to orthorhombic is detected when the Se/Ag/Se system is allowed to cool. Scanning electron microscopy images show that the phase transformation converts the grains of Se/Ag/Se films from wire-shaped to nanotubes. The second phase transformation causes a blueshift in the absorption coefficient spectra and increases the energy band gap. The structural and optical parameter enhancements achieved via heating render the Se thin films more suitable for optoelectronic applications.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

Selenium, thermal-assisted crystallization, hexagonal, optical properties

Turkish CoHE Thesis Center URL

Citation

3

WoS Q

Q3

Scopus Q

Source

Volume

48

Issue

12

Start Page

7906

End Page

7914

Collections