2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 21Citation - Scopus: 35Deep Learning-Based Computer-Aided Diagnosis (cad): Applications for Medical Image Datasets(Mdpi, 2022) Kadhim, Yezi Ali; Khan, Muhammad Umer; Mishra, AlokComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.Article Citation - WoS: 3Citation - Scopus: 3Time-Sensitive Ant Colony Optimization To Schedule a Mobile Sink for Data Collection in Wireless Sensor Networks(Old City Publishing inc, 2015) Karakaya, Murat; Computer EngineeringIn Wireless Sensor Networks, sensor nodes are deployed to monitor and record the changes in their surroundings. The collected data in the sensor memories is transferred to a remote central via static or mobile sinks. Because sensors have scarce memory capacity various challenges occur in gathering the data from the environment and transferring them to the remote control. For instance, a sensor's memory might get completely full with the sensed data if the sensor can not transfer them on time. Then, a memory overflow happens which causes all the collected data to be erased to free the memory for future readings. Therefore, when a mobile sink (MS) is employed to collect data from the sensors, the MS has to visit each sensor before any memory overflow takes place. In this paper, we study the design of a mobile sink scheduling algorithm based on the Ant Colony Optimization (ACO) meta-heuristic to address this specific issue. The proposed scheduling algorithm, called Mobile Element Scheduling with Time Sensitive ACO (MES/TSACO), aims to prepare a schedule for a mobile sink to visit sensors such that the number of memory overflow incidents is reduced and the amount of collected data is increased. To test and compare the effectiveness of the MES/TSACO approach, the Minimum Weighted Sum First (MWSF) heuristic is implemented as an alternative solution. The results obtained from the extensive simulation tests show that the MES/TSACO generates schedules with considerably reduced number of overflow incidents and increased amount of collected data compared to the MWSF heuristic.

