Search Results

Now showing 1 - 2 of 2
  • Article
    Citation - Scopus: 35
    Assessment of Polybenzimidazole/Mof Composite Membranes for the Improvement of High-Temperature Pem Fuel Cell Performance
    (Elsevier Ltd, 2024) Devrim,Y.; Colpan,C.O.
    This study aims to determine the most effective utilization of ZIF-8 type metal-organic framework (MOF) doped polybenzimidazole (PBI) composite membrane in high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC) and investigate how ZIF-8 filler affects performance. ZIF-8 particles were prepared by solvothermal method and added to the PBI polymer using a weight percentage varying from 1 to 5 %. XRD, BET, and TEM examined the prepared ZIF-8. Composite membrane properties were investigated by XRD, SEM analysis, proton conductivity measurements, acid doping, and acid stripping tests. The HT-PEMFC performances of the membranes were carried out using Hydrogen and dry air at 150–180. The highest performance was acquired with the composite ZIF8/PBI-2 membrane as 0.432 W/cm2 at 170 °C. The obtained result is explained by easier proton transfer over ZIF-8's enlarged tunnel network. This study proposes a promising strategy to use ZIF-8 to prepare a PBI composite membrane with excellent proton conductivity, acid doping, and low acid leaching for HT-PEMFC application. The current study's findings can support future research on PBI/MOF-based composite membranes for HT-PEMFC applications. © 2024 Hydrogen Energy Publications LLC
  • Conference Object
    ELECTROCHEMICAL HYDROGEN SEPARATION FROM REFORMATE USING POLYBENZIMIDAZOLE/MOF COMPOSITE MEMBRANES
    (International Association for Hydrogen Energy, IAHE, 2022) Durmuş,G.N.B.; Eren,E.O.; Devrim,Y.; Ozgur Colpan,C.; Özkan,N.
    This study introduces the experimental results of a high-temperature electrochemical hydrogen purification (ECHP) cell through poly 2.2-m-phenylene-5.5-bibenzimidazole/metal organic framework (PBI/MOF) composite membranes in the temperature range of 140°C-180°C. Synthesis of ZIF-8 and UiO-66 MOFs was conducted through a typical solvothermal method, and composite membranes containing 2.5 wt. %. MOF was fabricated. Experiments were conducted with pure hydrogen (H2) and reformate gas mixtures containing H2, carbon monoxide (CO), and carbon dioxide (CO2). A gas chromatography device (GC) was used to analyze the gas composition at the exit of the ECHP cell. The final output H2 purity was found to be >99.9 % for the H2/CO2/CO mixed-phase and >99.7% for the H2/CO mixed phase. © 2022 Proceedings of WHEC 2022 - 23rd World Hydrogen Energy Conference: Bridging Continents by H2. All rights reserved.