Search Results

Now showing 1 - 5 of 5
  • Article
    Comparative Analysis of Vibration Axis Effects on Ultrasonic Vibration-Assisted Machining of Inconel 718
    (MDPI, 2026) Namlu, Ramazan Hakki; Kilic, Zekai Murat
    Inconel 718 is widely utilized in critical engineering sectors, particularly aerospace, owing to its exceptional creep resistance, corrosion resistance, and retention of mechanical strength at elevated temperatures. However, its high hardness, low thermal conductivity, and strong work-hardening tendency make it extremely difficult to machine using conventional techniques. Ultrasonic Vibration-Assisted Machining (UVAM) has emerged as an effective strategy to overcome these limitations by superimposing high-frequency, low-amplitude vibrations onto the cutting process. Depending on the vibration direction, UVAM can significantly change chip formation, tool-workpiece interaction, and surface integrity. In this study, the influence of three UVAM modes-longitudinal (Z-UVAM), feed-directional (X-UVAM), and multi-axial (XZ-UVAM)-on the machining behavior of Inconel 718 was systematically investigated. The findings reveal that XZ-UVAM provides the most advantageous outcomes, primarily due to its intermittent cutting mechanism. Compared with Conventional Machining (CM), XZ-UVAM reduced cutting forces by up to 43% and areal surface roughness by 37%, while generating surfaces with more uniform topographies and smaller peak-to-valley variations. Furthermore, UVAM enhanced subsurface microhardness as a result of the surface hammering effect, which may improve fatigue performance. XZ-UVAM also effectively minimized burr formation, demonstrating its potential for high-quality, sustainable, and efficient machining of Inconel 718.
  • Conference Object
    Citation - WoS: 9
    Citation - Scopus: 10
    Multi-Axial Ultrasonic Vibration-Assisted Machining of Inconel 718 Using Al2O3-CuO Hybrid Nanofluid MQL
    (Elsevier Science BV, 2024) Namlu, Ramazan Hakki; Lotfi, Bahram; Kilic, Sadik Engin
    Inconel 718 is a widely used superalloy in the aerospace industry, owing to its exceptional creep and corrosion resistance, as well as its ability to retain strength at elevated temperatures. However, its machinability presents challenges due to its low thermal conductivity and high work hardening rate during conventional machining, resulting in inadequate surface quality. To address this issue, a recent technique known as Ultrasonic Vibration-Assisted Machining (UVAM) has emerged. UVAM involves applying high-frequency, low-amplitude vibrations to the cutting tool or workpiece. Additionally, Minimum Quantity Lubrication (MQL) has been considered as an alternative cooling technique to enhance machining performance. Optimizing the performance of UVAM can be achieved by employing various vibration axes. Additionally, the effectiveness of MQL can be enhanced through the utilization of nanofluids. This study investigates the combined application of multi-axis UVAM and Al2O3-CuO added Hybrid Nanofluid MQL (HNMQL) during the milling of Inconel 718. The evaluation parameters include surface roughness, topography, burr formations, and cutting forces. The results demonstrate that the simultaneous use of multi-axis UVAM and HNMQL significantly improves the machining performance of Inconel 718. This combination leads to better surface quality and overall process efficiency, offering promising prospects for the aerospace industry and other applications involving difficult-to-cut materials. (c) 2024 The Authors. Published by Elsevier B.V.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 16
    An Experimental Study on Ultrasonic-Assisted Drilling of Inconel 718 Under Different Cooling/Lubrication Conditions
    (Springer London Ltd, 2024) Erturun, Omer Faruk; Tekaut, Hasan; Cicek, Adem; Ucak, Necati; Namlu, Ramazan Hakki; Lotfi, Bahram; Kilic, S. Engin
    Ultrasonic-assisted drilling (UAD) is one of the efficient and innovative methods to improve the drillability of difficult-to-cut materials. In the present study, the UAD of Inconel 718 was investigated under different cooling and/or lubrication conditions. The drilling tests were carried out at a constant cutting speed (15 m/min) and a feed (0.045 mm/rev) using uncoated and TiAlN-coated solid carbide drills under dry, conventional cutting fluid (CCF), and minimum quantity lubrication (MQL) conditions. The applicability of UAD to drilling Inconel 718 was evaluated in terms of thrust force, surface roughness, roundness error, burr formation, subsurface microstructure and microhardness, tool wear, and chip morphology. The test results showed that, when compared to conventional drilling (CD), UAD reduced the thrust force and improved the hole quality, tool life, and surface integrity under all conditions. Good surface finish, lower roundness error, and minimum burr heights were achieved under CCF conditions. MQL drilling provided lower thrust forces, better tool performance, and good subsurface quality characteristics. In addition, the simultaneous application of CCF-UAD and MQD-UAD showed significantly better performance, especially when using the coated tool.
  • Article
    Effect of Aluminizing on the Oxidation of Inconel 718 and Inconel 738LC Superalloys at 925-1050 °C
    (MDPI, 2025) Telbakiroglu, Yusuf Burak; Konca, Erkan
    This study was undertaken to investigate the effect of aluminizing on the oxidation of Inconel 718 and Inconel 738LC superalloys. Bare and high-activity chemical vapor deposition (CVD) aluminized Inconel 718 and Inconel 738LC samples were oxidized in air at 925, 1000, and 1050 degrees C for 200 h. Detailed cross-sectional examinations, elemental analyses, mass change measurements, and X-ray diffraction studies were performed. It was observed that the oxidation resistances of both alloys were significantly improved by the Al2O3 scale formed on the NiAl layer that was created on the surfaces of the samples during aluminizing. The beneficial effect of aluminizing was found to be more evident in the case of Inconel 738LC alloy samples which showed lower oxidation rates at all test temperatures. The results have been discussed on the basis of the differences in aluminum contents of the alloys and their effects on diffusion.
  • Conference Object
    Citation - Scopus: 1
    Enhancing Sustainable Machining of Inconel 718 Using Multi-Walled Carbon Nanotubes and TiO2based Nanofluid Minimum Quantity Lubrication
    (Elsevier B.V., 2025) Namlu, Ramazan Hakkı; Kaftanoĝlu, Bılgın
    Inconel 718 is extensively utilized especially in the aerospace sector due to its outstanding resistance to creep and corrosion, along with its capability to maintain strength at high temperatures. However, its high work hardening rate and low thermal conductivity present significant challenges in machining processes, including the need for extensive use of coolants, shortened tool life, and the necessity for post-processing operations for adequate surface quality, all of which hinder sustainable manufacturing. To address these issues, an innovative cooling/lubrication method, Nanofluid Minimum Quantity Lubrication (NMQL), aims to enhance the sustainable machining of Inconel 718 by minimizing these problems. NMQL involves the aerosolized delivery of nanoparticle-enriched nanofluid oil with compressed air to the cutting zone. In this way, NMQL utilizes the nanoparticles' cooling and lubrication abilities, resulting in lower cutting forces, reduced surface roughness, and decreased tool wear compared to other cooling/lubrication conditions, thereby improving machining performance. This study compares the performance of NMQL in terms of cutting forces, surface roughness and topography, and subsurface microhardness, using Multi-Walled Carbon Nanotubes (MWCNT) and TiO2nanoparticles, with Conventional Cutting Fluids (CCF), aiming to achieve more sustainable machining of Inconel 718. Also, a sustainability assessment was done using Pugh Matrix Approach in order to find the most sustainable cooling option. © 2025 Elsevier B.V., All rights reserved.