Comparative Analysis of Vibration Axis Effects on Ultrasonic Vibration-Assisted Machining of Inconel 718
Loading...
Date
2026
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Inconel 718 is widely utilized in critical engineering sectors, particularly aerospace, owing to its exceptional creep resistance, corrosion resistance, and retention of mechanical strength at elevated temperatures. However, its high hardness, low thermal conductivity, and strong work-hardening tendency make it extremely difficult to machine using conventional techniques. Ultrasonic Vibration-Assisted Machining (UVAM) has emerged as an effective strategy to overcome these limitations by superimposing high-frequency, low-amplitude vibrations onto the cutting process. Depending on the vibration direction, UVAM can significantly change chip formation, tool-workpiece interaction, and surface integrity. In this study, the influence of three UVAM modes-longitudinal (Z-UVAM), feed-directional (X-UVAM), and multi-axial (XZ-UVAM)-on the machining behavior of Inconel 718 was systematically investigated. The findings reveal that XZ-UVAM provides the most advantageous outcomes, primarily due to its intermittent cutting mechanism. Compared with Conventional Machining (CM), XZ-UVAM reduced cutting forces by up to 43% and areal surface roughness by 37%, while generating surfaces with more uniform topographies and smaller peak-to-valley variations. Furthermore, UVAM enhanced subsurface microhardness as a result of the surface hammering effect, which may improve fatigue performance. XZ-UVAM also effectively minimized burr formation, demonstrating its potential for high-quality, sustainable, and efficient machining of Inconel 718.
Description
Keywords
Ultrasonic Vibration-Assisted Machining, Inconel 718, Cutting Force, Surface Integrity, Microhardness, Burr Formation
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q2
Scopus Q
Q2

OpenCitations Citation Count
N/A
Source
Machines
Volume
14
Issue
1
Start Page
End Page
Collections
PlumX Metrics
Citations
Scopus : 0
Captures
Mendeley Readers : 2
Downloads
4
checked on Feb 07, 2026
