Search Results

Now showing 1 - 6 of 6
  • Article
    Citation - WoS: 68
    Citation - Scopus: 69
    Composite Membrane by Incorporating Sulfonated Graphene Oxide in Polybenzimidazole for High Temperature Proton Exchange Membrane Fuel Cells
    (Pergamon-elsevier Science Ltd, 2022) Devrim, Yilser; Durmus, Gizem Nur Bulanik
    The objective of this work is to examine the polybenzimidazole (PBI)/sulfonated graphene oxide (sGO) membranes as alternative materials for high-temperature proton exchange membrane fuel cell (HT-PEMFC). PBI/sGO composite membranes were characterized by TGA, FTIR, SEM analysis, acid doping&acid leaching tests, mechanical analysis, and proton conductivity measurements. The proton conductivity of composite membranes was considerably enhanced by the existence of sGO filler. The enhancement of these properties is related to the increased content of -SO3H groups in the PBI/sGO composite membrane, increasing the channel availability required for the proton transport. The PBI/sGO membranes were tested in a single HT-PEMFC to evaluate high-temperature fuel cell performance. Amongst the PBI/sGO composite membranes, the membrane containing 5 wt. % GO (PBI/sGO-2) showed the highest HT-PEMFC performance. The maximum power density of 364 mW/cm(2) was yielded by PBI/sGO-2 membrane when operating the cell at 160 degrees C under non humidified conditions. In comparison, a maximum power density of 235 mW/cm(2) was determined by the PBI membrane under the same operating conditions. To investigate the HT-PEMFC stability, long-term stability tests were performed in comparison with the PBI membrane. After a long-term performance test for 200 h, the HT-PEMFC performance loss was obtained as 9% and 13% for PBI/sGO-2 and PBI membranes, respectively. The improved HT-PEMFC performance of PBI/sGO composite membranes suggests that PBI/sGO composites are feasible candidates for HT-PEMFC applications. (C) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Conference Object
    Citation - WoS: 98
    Citation - Scopus: 101
    Experimental Investigation of Co Tolerance in High Temperature Pem Fuel Cells
    (Pergamon-elsevier Science Ltd, 2018) Devrim, Yilser; Albostan, Ayhan; Devrim, Huseyin
    In the present work, the effect of operating a high temperature proton exchange membrane fuel cell (HT-PEMFC) with different reactant gases has been investigated throughout performance tests. Also, the effects of temperature on the performance of a HT-PEMFC were analyzed at varying temperatures, ranging from 140 degrees C to 200 degrees C. Increasing the operating temperature of the cell increases the performance of the HT-PEMFC. The optimum operating temperature was determined to be 160 degrees C due to the deformations occurring in the cell components at high working temperatures. To investigate the effects of CO on the performance of HT-PEMFC, the CO concentration ranged from 1 to 5 vol %. The current density at 0.6 V decreases from 0.33 A/cm(2) for H-2 to 0.31 A/cm(2) for H-2 containing 1 vol % CO, to 0.29 A/cm(2) for 3 vol % CO, and 0.25 A/cm(2) for 5 vol % CO, respectively. The experimental results show that the presence of 25 vol % CO2 or N-2 has only a dilution effect and therefore, there is a minor impact on the HT-PEMFC performance. However, the addition of CO to H-2/N-2 or H-2/CO2 mixtures increased the performance loss. After longterm performance test for 500 h, the observed voltage drop at constant current density was obtained as similar to 14.8% for H-2/CO2/CO (75/22/3) mixture. The overall results suggest that the anode side gas mixture with up to 5 vol % CO can be supplied to the HT-PEMFC stack directly from the reformer. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Article
    Experimental Study and Theoretical Investigation of High Temperature Proton Exchange Membrane Fuel Cell Micro-Cogeneration Application
    (Turkish Soc thermal Sciences Technology, 2018) Devrim, Yilser; Ozgirgin Yapici, Ekin; Energy Systems Engineering
    In this study, a house hold micro-cogeneration system is designed using high temperature proton exchange membrane (HTPEM) fuel cell. HTPEM type fuel cells gain the highest interest lately, due to their advantages in terms of increasing efficiency and power quality, reducing harmful emissions and flexibility of operation with respect to the other fuels. The micro-cogeneration system involves producing both electrical energy and hot water and/or vapor together in an economical way, utilizing single fuel (HTPEM fuel cells) for household applications. During the operation of the fuel cell, for high efficiency and stable power production, the access heat of the stack should be removed constantly and the temperature of the stack should be held stable. Heat recovered from the designed innovative cooling system is used for acquiring energy for heating water. This way, thermal efficiency is almost doubled compared to simple cycle. In the scope of this study, 225 W HTPEM fuel cell stack is designed and tested at 160 degrees C operation temperature with hydrogen gas and air. During operation, for homogenous distribution of temperature among the cells, for a short start up period leading to a fast required steady state temperature and for constantly removing the access heat produced in the cell, the cell stack is cooled by using a cooling fluid (Heat Transfer Oil 32- Petrol Ofisi). Selection of insulation material type and thickness for the cell stack is done using natural convection and radiation loss calculations. For the most efficient operating conditions, micro-cogeneration system water inlet and exit temperatures, water and cooling fluid flow rates, convenient pipe diameter and pump power calculations are done to finalize the design. With the cogeneration system designed during the studies, by recovering the access heat of the insulated HTPEM cell stack, district water with initial temperature of 15-20 degrees C is heated around 50 degrees C. Data gathered during studies indicate that fuel cell micro-cogeneration application is highly viable.
  • Article
    Citation - WoS: 157
    Citation - Scopus: 171
    Development of Polybenzimidazole/Graphene Oxide Composite Membranes for High Temperature Pem Fuel Cells
    (Pergamon-elsevier Science Ltd, 2017) Uregen, Nurhan; Pehlivanoglu, Kubra; Ozdemir, Yagmur; Devrim, Yilser
    In this study, phosphoric acid doped Polybenzimidazole/Graphene Oxide (PBI/GO) nano composite membranes were prepared by dispersion of various amounts of GO in PBI polymer matrix followed by phosphoric acid doping for high temperature proton exchange membrane fuel cell (HT-PEMFC) application. The structure of the PBI/GO composite membranes was investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and by thermogravimetric analysis (TGA). The introduction of GO into the FBI polymer matrix helps to improve the acid doping, proton conductivity and acid leaching properties. The SEM analyses have proved the uniform and homogeneous distribution of GO in composite membranes. The composite membranes were tested in a single HT-PEMFC with a 5 cm(2) active area at 165 degrees C without humidification. HT-PEMFC tests show that PBI/ GO composite membrane with 2 wt. % GO content performed better than bare PBI membrane at non humidified condition. At ambient pressure and 165 degrees C, the maximum power density of the PBI/GO-1 membrane can reach 0.38 W/cm(2), and the current density at 0.6 V is up to 0.252 A/cm(2), with H-2/air. The results indicate the PBI/GO composite membranes could be utilized as the proton exchange membranes for HT-PEMFC. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 61
    Citation - Scopus: 77
    Green Hydrogen Based Off-Grid and On-Grid Hybrid Energy Systems
    (Pergamon-elsevier Science Ltd, 2023) Ceylan, Ceren; Devrim, Yilser
    This study aims to evaluate a green hydrogen (H2) based hybrid energy system (HES) from solar and wind renewable energy sources. The proposed HES contains PV panels, wind turbines and a proton exchange membrane water electrolyzer. Meteorology data such as solar radiation, temperature and wind speed were obtained from Atilim University Incek Campus Meteorology Station (Ankara, Turkey). The designed HES has been examined as both grid-connected and off-grid. In the grid-connected system, the electricity requirement of the load is supplied by the sun and wind, and the surplus energy produced is stored by producing H2 using an electrolyzer. In the off-grid HES, the electricity requirement of the load is completely provided by the proton exchange membrane fuel cell (PEMFC). In this system, the electrolyzer produces the H2 needed by the PEMFC with the energy provided by solar and wind energy. According to the results, 20,186 kWh of energy is produced annually in the on-grid and 3273 sm3 of H2 is stored. The off-grid system is investigated for Design-1 and Design-2 using two different wind turbine (WT) rated power. In Design-1 and Design-2, annually 95,145 kWh and 83,511 kWh of energy are produced annually 17,942 sm3 and 14,370 sm3 H2 are stored, respectively. When the on-grid and off-grid systems are examined; levelized cost of energy (LCOE) was calculated as 0.223 $/kWh for the on-grid system and 0.416 $/kWh and 0.410 $/kWh for Design-1 and Design-2 for off-grid systems, respectively. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 19
    Citation - Scopus: 20
    Synthesis, Characterization, and Enhanced Formic Acid Electrooxidation Activity of Carbon Supported Mnox Promoted Pd Nanoparticles
    (Elsevier, 2018) Bulut, Ahmet; Yurderi, Mehmet; Alal, Orhan; Kivrak, Hilal; Kaya, Murat; Zahmakiran, Mehmet
    Formic acid (HCOOH) is one of the promising fuels for direct liquid fed fuel cells. However, CO poisoning is a major challenge for the development of effective catalytic system for formic acid electrooxidation (FAEO). Herein, a novel CO-resistive activated carbon supported Pd-MnOx bimetallic catalyst (Pd-MnOx/C) was presented for FAEO. Pd-MnOx/C catalyst was prepared via simple and reproducible surfactant-free deposition-reduction technique. The characterization of this novel Pd-MnOx/C catalyst was performed by inductively coupled plasma-optical emission spectroscopy (ICP-OES), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), bright field transmission electron microscopy (BFTEM), high resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), and scanning transmission electron microscope-energy dispersive X-ray spectroscopy (STEM-EDX). The characterization results revealed that Pd and MnOx nanoparticles (NPs) were well dispersed and separately nucleated with a mean diameter of 2.9 nm on the surface of active carbon. FAEO studies were performed on both Pd-MnOx/C and Pd/C catalysts to comprehend the effect of separately formed MnOx on the electrocatalytic activity of Pd NPs. The electrochemical measurements were carried out by using Cyclic Voltammetry (CV) and Chronoamperometry (CA), CO-Strriping Voltammetry, Lineer Sweep Voltammetry (LSV), Electrochemical impedance spectroscopy (EIS) techniques. Electrochemical results revealed that FAEO was activated by the addition of MnOx. Pd-0.6-Mn-0.4 exhibited the optimum catalytic activity with 1.05 A/mg Pd current density. The sum of their results clearly points that the existence of MnOx NPs enhances the electrocatalytic activity of Pd NPs by increasing their CO-resistivity and durability throughout the FAEO. (C) 2018 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.