Green Hydrogen Based Off-Grid and On-Grid Hybrid Energy Systems

Loading...
Thumbnail Image

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.

Journal Issue

Abstract

This study aims to evaluate a green hydrogen (H2) based hybrid energy system (HES) from solar and wind renewable energy sources. The proposed HES contains PV panels, wind turbines and a proton exchange membrane water electrolyzer. Meteorology data such as solar radiation, temperature and wind speed were obtained from Atilim University Incek Campus Meteorology Station (Ankara, Turkey). The designed HES has been examined as both grid-connected and off-grid. In the grid-connected system, the electricity requirement of the load is supplied by the sun and wind, and the surplus energy produced is stored by producing H2 using an electrolyzer. In the off-grid HES, the electricity requirement of the load is completely provided by the proton exchange membrane fuel cell (PEMFC). In this system, the electrolyzer produces the H2 needed by the PEMFC with the energy provided by solar and wind energy. According to the results, 20,186 kWh of energy is produced annually in the on-grid and 3273 sm3 of H2 is stored. The off-grid system is investigated for Design-1 and Design-2 using two different wind turbine (WT) rated power. In Design-1 and Design-2, annually 95,145 kWh and 83,511 kWh of energy are produced annually 17,942 sm3 and 14,370 sm3 H2 are stored, respectively. When the on-grid and off-grid systems are examined; levelized cost of energy (LCOE) was calculated as 0.223 $/kWh for the on-grid system and 0.416 $/kWh and 0.410 $/kWh for Design-1 and Design-2 for off-grid systems, respectively. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Description

DEVRIM, YILSER/0000-0001-8430-0702; CEYLAN, CEREN/0000-0002-0155-7893

Keywords

Green hydrogen, Hybrid energy system, Photovoltaic, Wind turbine, Fuel cell, Hydrogen production

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Source

Volume

48

Issue

99

Start Page

39084

End Page

39096

Collections

SCOPUS™ Citations

65

checked on Oct 20, 2025

Web of Science™ Citations

54

checked on Oct 20, 2025

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo