2 results
Search Results
Now showing 1 - 2 of 2
Article Citation - WoS: 25Citation - Scopus: 26Production and Properties of Tooth-Colored Yttria Stabilized Zirconia Ceramics for Dental Applications(Elsevier Sci Ltd, 2018) Kaplan, Melis; Park, Jongee; Kim, Soo Young; Ozturk, AbdullahDense zirconia stabilized with 3 mol% yttria ceramics were produced in disc shape by first cold isostatically pressing at 100 MPa and then sintering at 1450 degrees C at ambient laboratory conditions. Coloring was accomplished by immersion the discs in NiCl2, MoCl3, and NiCl2 + MoCl3 solutions for 5, 30, and 60 s. Different concentrations (0.1, 0.25, and 0.5 wt%) were applied to get the color of natural tooth. The density, color, microhardness, fracture toughness, compressive strength, and wear rate of the discs were measured to evaluate the suitability of the colored discs for dental applications. Color assessments were made by measuring CIE Lab L*, a*, b, and Delta E* values. Low temperature degradation of the samples was evaluated by aging sensitivity tests in autoclave for 2, 4, and 6 h. Results have shown that color produced depends on the kind and concentration of the colorant solution while time of immersion has no significant effect on coloring process. Coloring solutions containing 0.1 and 0.25 wt% MoCl3 provided clinically acceptable color with the Delta E* value ranging from 5.16 to 6.42 for dental applications.Book Part A Numerical Approach To Simulating Oxidation in Thermal Barrier Coatings(Elsevier, 2020) Saeidi,F.; Gurses,E.; Aslan,O.Computational analysis and simulation of multi-physics phenomena taking place in coating systems is still a challenging task. Specifically, for ceramic coatings used as a system of protection for base materials against elevated temperatures, known as thermal barrier coating (TBC) systems, construction of continuum level models which can express coupled nonlinear phenomena has attracted great attention. Thermal stresses, oxidation, creep and numerous other mechanisms and phenomena makes it even harder to model and simulate the behavior of TBCs. In this article, a new numerical model which allows simulation of oxidation and thermally grown oxide (TGO) of bond-coat is presented. Phase field theory is used with finite strain formulation and implemented using user element subroutine (UEL) in ABAQUS software for finite element method. Results are compared with experimental data available for TGO in the literature. © 2020 Elsevier Inc. All rights reserved

