A Numerical Approach To Simulating Oxidation in Thermal Barrier Coatings

Loading...
Publication Logo

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Computational analysis and simulation of multi-physics phenomena taking place in coating systems is still a challenging task. Specifically, for ceramic coatings used as a system of protection for base materials against elevated temperatures, known as thermal barrier coating (TBC) systems, construction of continuum level models which can express coupled nonlinear phenomena has attracted great attention. Thermal stresses, oxidation, creep and numerous other mechanisms and phenomena makes it even harder to model and simulate the behavior of TBCs. In this article, a new numerical model which allows simulation of oxidation and thermally grown oxide (TGO) of bond-coat is presented. Phase field theory is used with finite strain formulation and implemented using user element subroutine (UEL) in ABAQUS software for finite element method. Results are compared with experimental data available for TGO in the literature. © 2020 Elsevier Inc. All rights reserved

Description

Keywords

Ceramic, Ceramic failure, FEM, Oxidation, Phase field, Thermal barrier coating, Thermally grown oxide

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Encyclopedia of Renewable and Sustainable Materials: Volume 1-5

Volume

1-5

Issue

Start Page

986

End Page

992

Collections

PlumX Metrics
Citations

Scopus : 0

Captures

Mendeley Readers : 3

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo