A Numerical Approach to Simulating Oxidation in Thermal Barrier Coatings
dc.authorscopusid | 58188169700 | |
dc.authorscopusid | 15070322000 | |
dc.authorscopusid | 25521345500 | |
dc.contributor.author | Saeidi,F. | |
dc.contributor.author | Gurses,E. | |
dc.contributor.author | Aslan,O. | |
dc.contributor.other | Department of Mechanical Engineering | |
dc.contributor.other | Department of Basic English (Prep School) | |
dc.contributor.other | Mechanical Engineering | |
dc.date.accessioned | 2024-07-05T15:45:53Z | |
dc.date.available | 2024-07-05T15:45:53Z | |
dc.date.issued | 2020 | |
dc.department | Atılım University | en_US |
dc.department-temp | Saeidi F., Atilim University, Ankara, Golbasi, Turkey, Middle East Technical University, Ankara, Cankaya, Turkey; Gurses E., Middle East Technical University, Ankara, Cankaya, Turkey; Aslan O., Atilim University, Ankara, Golbasi, Turkey | en_US |
dc.description.abstract | Computational analysis and simulation of multi-physics phenomena taking place in coating systems is still a challenging task. Specifically, for ceramic coatings used as a system of protection for base materials against elevated temperatures, known as thermal barrier coating (TBC) systems, construction of continuum level models which can express coupled nonlinear phenomena has attracted great attention. Thermal stresses, oxidation, creep and numerous other mechanisms and phenomena makes it even harder to model and simulate the behavior of TBCs. In this article, a new numerical model which allows simulation of oxidation and thermally grown oxide (TGO) of bond-coat is presented. Phase field theory is used with finite strain formulation and implemented using user element subroutine (UEL) in ABAQUS software for finite element method. Results are compared with experimental data available for TGO in the literature. © 2020 Elsevier Inc. All rights reserved | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/B978-0-12-803581-8.11194-4 | |
dc.identifier.endpage | 992 | en_US |
dc.identifier.isbn | 978-012813196-1 | |
dc.identifier.isbn | 978-012813195-4 | |
dc.identifier.scopus | 2-s2.0-85152811092 | |
dc.identifier.startpage | 986 | en_US |
dc.identifier.uri | https://doi.org/10.1016/B978-0-12-803581-8.11194-4 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/3969 | |
dc.identifier.volume | 1-5 | en_US |
dc.institutionauthor | Saeıdı, Farıd | |
dc.institutionauthor | Aslan, Oktay | |
dc.institutionauthor | Aslan, Özgür | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Encyclopedia of Renewable and Sustainable Materials: Volume 1-5 | en_US |
dc.relation.publicationcategory | Kitap Bölümü - Uluslararası | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Ceramic | en_US |
dc.subject | Ceramic failure | en_US |
dc.subject | FEM | en_US |
dc.subject | Oxidation | en_US |
dc.subject | Phase field | en_US |
dc.subject | Thermal barrier coating | en_US |
dc.subject | Thermally grown oxide | en_US |
dc.title | A Numerical Approach to Simulating Oxidation in Thermal Barrier Coatings | en_US |
dc.type | Book Part | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 58acc1a2-66a4-484e-938e-c37ac41a639d | |
relation.isAuthorOfPublication | db785242-d131-4ade-b7a6-c3d17f48999f | |
relation.isAuthorOfPublication | 8e955d4b-b0a3-463e-ae19-1ac6791507a5 | |
relation.isAuthorOfPublication.latestForDiscovery | 58acc1a2-66a4-484e-938e-c37ac41a639d | |
relation.isOrgUnitOfPublication | f77120c2-230c-4f07-9aae-94376b6c4cbb | |
relation.isOrgUnitOfPublication | 3f1ed3aa-459e-49bf-a977-9886b9e3f76f | |
relation.isOrgUnitOfPublication | d2cd5950-09a4-4d1d-976e-01f8f7ee4808 | |
relation.isOrgUnitOfPublication.latestForDiscovery | f77120c2-230c-4f07-9aae-94376b6c4cbb |