A Numerical Approach to Simulating Oxidation in Thermal Barrier Coatings

dc.authorscopusid58188169700
dc.authorscopusid15070322000
dc.authorscopusid25521345500
dc.contributor.authorSaeıdı, Farıd
dc.contributor.authorAslan, Oktay
dc.contributor.authorAslan,O.
dc.contributor.authorAslan, Özgür
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.otherDepartment of Basic English (Prep School)
dc.contributor.otherMechanical Engineering
dc.date.accessioned2024-07-05T15:45:53Z
dc.date.available2024-07-05T15:45:53Z
dc.date.issued2020
dc.departmentAtılım Universityen_US
dc.department-tempSaeidi F., Atilim University, Ankara, Golbasi, Turkey, Middle East Technical University, Ankara, Cankaya, Turkey; Gurses E., Middle East Technical University, Ankara, Cankaya, Turkey; Aslan O., Atilim University, Ankara, Golbasi, Turkeyen_US
dc.description.abstractComputational analysis and simulation of multi-physics phenomena taking place in coating systems is still a challenging task. Specifically, for ceramic coatings used as a system of protection for base materials against elevated temperatures, known as thermal barrier coating (TBC) systems, construction of continuum level models which can express coupled nonlinear phenomena has attracted great attention. Thermal stresses, oxidation, creep and numerous other mechanisms and phenomena makes it even harder to model and simulate the behavior of TBCs. In this article, a new numerical model which allows simulation of oxidation and thermally grown oxide (TGO) of bond-coat is presented. Phase field theory is used with finite strain formulation and implemented using user element subroutine (UEL) in ABAQUS software for finite element method. Results are compared with experimental data available for TGO in the literature. © 2020 Elsevier Inc. All rights reserveden_US
dc.identifier.citation0
dc.identifier.doi10.1016/B978-0-12-803581-8.11194-4
dc.identifier.endpage992en_US
dc.identifier.isbn978-012813196-1
dc.identifier.isbn978-012813195-4
dc.identifier.scopus2-s2.0-85152811092
dc.identifier.startpage986en_US
dc.identifier.urihttps://doi.org/10.1016/B978-0-12-803581-8.11194-4
dc.identifier.urihttps://hdl.handle.net/20.500.14411/3969
dc.identifier.volume1-5en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofEncyclopedia of Renewable and Sustainable Materials: Volume 1-5en_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCeramicen_US
dc.subjectCeramic failureen_US
dc.subjectFEMen_US
dc.subjectOxidationen_US
dc.subjectPhase fielden_US
dc.subjectThermal barrier coatingen_US
dc.subjectThermally grown oxideen_US
dc.titleA Numerical Approach to Simulating Oxidation in Thermal Barrier Coatingsen_US
dc.typeBook Parten_US
dspace.entity.typePublication
relation.isAuthorOfPublication58acc1a2-66a4-484e-938e-c37ac41a639d
relation.isAuthorOfPublicationdb785242-d131-4ade-b7a6-c3d17f48999f
relation.isAuthorOfPublication8e955d4b-b0a3-463e-ae19-1ac6791507a5
relation.isAuthorOfPublication.latestForDiscovery58acc1a2-66a4-484e-938e-c37ac41a639d
relation.isOrgUnitOfPublicationf77120c2-230c-4f07-9aae-94376b6c4cbb
relation.isOrgUnitOfPublication3f1ed3aa-459e-49bf-a977-9886b9e3f76f
relation.isOrgUnitOfPublicationd2cd5950-09a4-4d1d-976e-01f8f7ee4808
relation.isOrgUnitOfPublication.latestForDiscoveryf77120c2-230c-4f07-9aae-94376b6c4cbb

Files

Collections