A Numerical Approach To Simulating Oxidation in Thermal Barrier Coatings

dc.authorscopusid 58188169700
dc.authorscopusid 15070322000
dc.authorscopusid 25521345500
dc.contributor.author Saeidi,F.
dc.contributor.author Gurses,E.
dc.contributor.author Aslan,O.
dc.contributor.other Department of Mechanical Engineering
dc.contributor.other Department of Basic English (Prep School)
dc.contributor.other Mechanical Engineering
dc.date.accessioned 2024-07-05T15:45:53Z
dc.date.available 2024-07-05T15:45:53Z
dc.date.issued 2020
dc.department Atılım University en_US
dc.department-temp Saeidi F., Atilim University, Ankara, Golbasi, Turkey, Middle East Technical University, Ankara, Cankaya, Turkey; Gurses E., Middle East Technical University, Ankara, Cankaya, Turkey; Aslan O., Atilim University, Ankara, Golbasi, Turkey en_US
dc.description.abstract Computational analysis and simulation of multi-physics phenomena taking place in coating systems is still a challenging task. Specifically, for ceramic coatings used as a system of protection for base materials against elevated temperatures, known as thermal barrier coating (TBC) systems, construction of continuum level models which can express coupled nonlinear phenomena has attracted great attention. Thermal stresses, oxidation, creep and numerous other mechanisms and phenomena makes it even harder to model and simulate the behavior of TBCs. In this article, a new numerical model which allows simulation of oxidation and thermally grown oxide (TGO) of bond-coat is presented. Phase field theory is used with finite strain formulation and implemented using user element subroutine (UEL) in ABAQUS software for finite element method. Results are compared with experimental data available for TGO in the literature. © 2020 Elsevier Inc. All rights reserved en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/B978-0-12-803581-8.11194-4
dc.identifier.endpage 992 en_US
dc.identifier.isbn 978-012813196-1
dc.identifier.isbn 978-012813195-4
dc.identifier.scopus 2-s2.0-85152811092
dc.identifier.startpage 986 en_US
dc.identifier.uri https://doi.org/10.1016/B978-0-12-803581-8.11194-4
dc.identifier.uri https://hdl.handle.net/20.500.14411/3969
dc.identifier.volume 1-5 en_US
dc.institutionauthor Saeıdı, Farıd
dc.institutionauthor Aslan, Oktay
dc.institutionauthor Aslan, Özgür
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Encyclopedia of Renewable and Sustainable Materials: Volume 1-5 en_US
dc.relation.publicationcategory Kitap Bölümü - Uluslararası en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Ceramic en_US
dc.subject Ceramic failure en_US
dc.subject FEM en_US
dc.subject Oxidation en_US
dc.subject Phase field en_US
dc.subject Thermal barrier coating en_US
dc.subject Thermally grown oxide en_US
dc.title A Numerical Approach To Simulating Oxidation in Thermal Barrier Coatings en_US
dc.type Book Part en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 58acc1a2-66a4-484e-938e-c37ac41a639d
relation.isAuthorOfPublication db785242-d131-4ade-b7a6-c3d17f48999f
relation.isAuthorOfPublication 8e955d4b-b0a3-463e-ae19-1ac6791507a5
relation.isAuthorOfPublication.latestForDiscovery 58acc1a2-66a4-484e-938e-c37ac41a639d
relation.isOrgUnitOfPublication f77120c2-230c-4f07-9aae-94376b6c4cbb
relation.isOrgUnitOfPublication 3f1ed3aa-459e-49bf-a977-9886b9e3f76f
relation.isOrgUnitOfPublication d2cd5950-09a4-4d1d-976e-01f8f7ee4808
relation.isOrgUnitOfPublication.latestForDiscovery f77120c2-230c-4f07-9aae-94376b6c4cbb

Files

Collections