Search Results

Now showing 1 - 4 of 4
  • Article
    Citation - WoS: 11
    Citation - Scopus: 15
    A Study on the Performance Evaluation of Wavelet Decomposition in Transient-Based Radio Frequency Fingerprinting of Bluetooth Devices
    (Wiley, 2022) Almashaqbeh, Hemam; Dalveren, Yaser; Kara, Ali
    Radio frequency fingerprinting (RFF) is used as a physical-layer security method to provide security in wireless networks. Basically, it exploits the distinctive features (fingerprints) extracted from the physical waveforms emitted from radio devices in the network. One of the major challenges in RFF is to create robust features forming the fingerprints of radio devices. Here, dual-tree complex wavelet transform (DT-CWT) provides an accurate way of extracting those robust features. However, its performance on the RFF of Bluetooth transients which fall into narrowband signaling has not been reported yet. Therefore, this study examines the performance of DT-CWT features on the use of transient-based RFF of Bluetooth devices. Initially, experimentally collected Bluetooth transients from different smartphones are decomposed by DT-CWT. Then, the characteristics and statistics of the wavelet domain signal are exploited to create robust features. Next, the support vector machine (SVM) is used to classify the smartphones. The classification accuracy is demonstrated by varying channel signal-to-noise ratio (SNR) and the size of transient duration. Results show that reasonable accuracy can be achieved (lower bound of 88%) even with short transient duration (1024 samples) at low SNRs (0-5 dB).
  • Data Paper
    Citation - WoS: 42
    Citation - Scopus: 62
    A Database for the Radio Frequency Fingerprinting of Bluetooth Devices
    (Mdpi, 2020) Uzundurukan, Emre; Dalveren, Yaser; Kara, Ali
    Radio frequency fingerprinting (RFF) is a promising physical layer protection technique which can be used to defend wireless networks from malicious attacks. It is based on the use of the distinctive features of the physical waveforms (signals) transmitted from wireless devices in order to classify authorized users. The most important requirement to develop an RFF method is the existence of a precise, robust, and extensive database of the emitted signals. In this context, this paper introduces a database consisting of Bluetooth (BT) signals collected at different sampling rates from 27 different smartphones (six manufacturers with several models for each). Firstly, the data acquisition system to create the database is described in detail. Then, the two well-known methods based on transient BT signals are experimentally tested by using the provided data to check their solidity. The results show that the created database may be useful for many researchers working on the development of the RFF of BT devices.
  • Article
    Citation - WoS: 55
    Citation - Scopus: 70
    Assessment of Features and Classifiers for Bluetooth Rf Fingerprinting
    (Ieee-inst Electrical Electronics Engineers inc, 2019) Ali, Aysha M.; Uzundurukan, Emre; Kara, Ali
    Recently, network security has become a major challenge in communication networks. Most wireless networks are exposed to some penetrative attacks such as signal interception, spoofing, and stray. Radio frequency (RF) fingerprinting is considered to be a promising solution for network security problems and has been applied with various improvements. In this paper, extensive data from Bluetooth (BT) devices are utilized in RF fingerprinting implementation. Hilbert-Huang transform (HHT) has been used, for the first time, for RF fingerprinting of Bluetooth (BT) device identification. In this way, time-frequency-energy distributions (TFED) are utilized. By means of the signals' energy envelopes, the transient signals are detected with some improvements. Thirteen features are extracted from the signals' transients along with their TFEDs. The extracted features are pre-processed to evaluate their usability. The implementation of three different classifiers to the extracted features is provided for the first time in this paper. A comparative analysis based on the receiver operating characteristics (ROC) curves, the associated areas under curves (AUC), and confusion matrix are obtained to visualize the performance of the applied classifiers. In doing this, different levels of signal to noise ratio (SNR) levels are used to evaluate the robustness of the extracted features and the classifier performances. The classification performance demonstrates the feasibility of the method. The results of this paper may help readers assess the usability of RF fingerprinting for BT signals at the physical layer security of wireless networks.
  • Article
    Citation - WoS: 18
    Citation - Scopus: 19
    Performance Analysis of Modular Rf Front End for Rf Fingerprinting of Bluetooth Devices
    (Springer, 2020) Uzundurukan, Emre; Ali, Aysha M.; Dalveren, Yaser; Kara, Ali
    Radio frequency fingerprinting (RFF) could provide an efficient solution to address the security issues in wireless networks. The data acquisition system constitutes an important part of RFF. In this context, this paper presents an implementation of a modular RF front end system to be used in data acquisition for RFF. Modularity of the system provides flexible implementation options to suit diverse frequency bands with different applications. Moreover, the system is able to collect data by means of any digitizer, and enable to record the data at lower frequencies. Therefore, proposed RF front end system becomes a low-cost alternative to existing devices used in data acquisition. In its implementation, Bluetooth (BT) signals were used. Initially, transients of BT signals were detected by utilizing a large number of BT devices (smartphones). From the detected transients, distinctive signal features were extracted. Then, support vector machine (SVM) and neural networks (NN) classifiers were implemented to the extracted features for evaluating the feasibility of proposed system in RFF. As a result, 96.9% and 96.5% classification accuracies on BT devices have been demonstrated for SVM and NN classifiers respectively.