338 results
Search Results
Now showing 1 - 10 of 338
Article Citation - WoS: 19Citation - Scopus: 19A Study on the Dark and Illuminated Operation of Al/Si3< Schottky Photodiodes: Optoelectronic Insights(Springer Heidelberg, 2024) Surucu, Ozge; Yildiz, Dilber Esra; Yildirim, MuratThis work extensively investigates the operation of an Al/ Si3N4/p-Si Schottky-type photodiode under dark and varying illumination intensities. The photodiode is fabricated by employing the metal-organic chemical vapor deposition (MOCVD) method. A thorough electrical characterization is performed at room temperature, encompassing measurements of current-voltage (I-V), current-time (I-t), capacitance-time (C-t), and conductance time (G-t). The photodiode's rectification factor and reverse bias area increased under illumination. The relationship between light power density, barrier height, and diode ideality factor is found. The study also found a strong correlation between light intensity and applied voltage on series resistance (R-s) and shunt resistance (R-sh). R-s values are calculated using Cheung's functions, revealing the diode's resistance behavior. The study also examines the photodiode's photoconductivity and photoconductance, finding a non-linear relationship between photocurrent and illumination intensity, suggesting bimolecular recombination. Calculated photosensitivity (K), responsivity (R), and detectivity (D*) values show the device's light response effectiveness, but efficiency decreases at higher illumination intensities. Transient experiments indicate stable and reproducible photocurrent characteristics, revealing photogenerated charge temporal evolution. This study provides a complete understanding of the Al/Si3N4/p-Si Schottky photodiode's behavior under different illumination intensities. The findings advance optoelectronic device knowledge and enable their use in advanced technologies.Article Citation - WoS: 10Citation - Scopus: 10Higher Rates of Cefiderocol Resistance Among Ndm Producing klebsiella Bloodstream Isolates Applying Eucast Over Clsi Breakpoints(Taylor & Francis Ltd, 2023) Isler, Burcu; Vatansever, Cansel; Ozer, Berna; Cinar, Gule; Aslan, Abdullah Tarik; Falconer, Caitlin; Harris, Patrick N. A.BackgroundCefiderocol is generally active against carbapenem-resistant Klebsiella spp. (CRK) with higher MICs against metallo-beta-lactamase producers. There is a variation in cefiderocol interpretive criteria determined by EUCAST and CLSI. Our objective was to test CRK isolates against cefiderocol and compare cefiderocol susceptibilities using EUCAST and CLSI interpretive criteria.MethodsA unique collection (n = 254) of mainly OXA-48-like- or NDM-producing CRK bloodstream isolates were tested against cefiderocol with disc diffusion (Mast Diagnostics, UK). Beta-lactam resistance genes and multilocus sequence types were identified using bioinformatics analyses on complete bacterial genomes.ResultsMedian cefiderocol inhibition zone diameter was 24 mm (interquartile range [IQR] 24-26 mm) for all isolates and 18 mm (IQR 15-21 mm) for NDM producers. We observed significant variability between cefiderocol susceptibilities using EUCAST and CLSI breakpoints, such that 26% and 2% of all isolates, and 81% and 12% of the NDM producers were resistant to cefiderocol using EUCAST and CLSI interpretive criteria, respectively.ConclusionsCefiderocol resistance rates among NDM producers are high using EUCAST criteria. Breakpoint variability may have significant implications on patient outcomes. Until more clinical outcome data are available, we suggest using EUCAST interpretive criteria for cefiderocol susceptibility testing.Article Citation - Scopus: 3Complete Characterization of a Class of Permutation Trinomials in Characteristic Five(Springer, 2024) Grassl,M.; Özbudak,F.; Özkaya,B.; Temür,B.G.In this paper, we address an open problem posed by Bai and Xia in [2]. We study polynomials of the form f(x)=x4q+1+λ1x5q+λ2xq+4 over the finite field F5k, which are not quasi-multiplicative equivalent to any of the known permutation polynomials in the literature. We find necessary and sufficient conditions on λ1,λ2∈F5k so that f(x) is a permutation monomial, binomial, or trinomial of F52k. © The Author(s) 2024.Article Knee Hyperextension in Chronic Stroke: Associated Biomechanical and Neuromuscular Factors(Elsevier Sci Ltd, 2025) Korkusuz, Sueleyman; Korkusuz, Busra Seckinogullari; Ozgoren, Nihat; Aritan, Serdar; Ceren, Ali Naim; Topcuoglu, Mehmet Akif; Balkan, Ayla FilBackground: This study aimed to determine the gait phase in which knee hyperextension occurs in stroke patients and to investigate the factors associated with knee hyperextension. Methods: This study included 30 stroke patients aged between 40 and 70 years with maximum knee hyperextension during the stance phase of gait. Muscle strength was evaluated with manual muscle test, and muscle tone was assessed with the Modified Ashworth Scale. Kinematic evaluation of the patients was made using the motion analysis system. Additionally, categorisation was made according to the stance phase of gait, where knee hyperextension was at its highest. Findings: A weak relationship was found between maximum knee hyperextension angle and gastrocnemius spasticity, a moderate relationship between knee flexor muscle strength, and a moderate relationship between ankle dorsiflexor muscle strength. In addition, a weak relationship was found between the maximum knee hyperextension and pelvic retraction angles. According to this clustering, it was observed that 66.67 % of the participants (20 people) showed maximum knee hyperextension in the single support phase. It was observed that the participants who had maximum knee hyperextension, especially after the mid-stance phase, had higher mean gastrocnemius spasticity. It was also observed that participants in Cluster 4, with a greater amount of maximum knee hyperextension, had the worst clinical parameters. Interpretation: Our study observed that the degree of maximum knee hyperextension was related to knee flexor and ankle dorsiflexor muscle strengths, gastrocnemius spasticity and pelvic retraction. As clinical parameters worsened, maximum knee hyperextension was thought to occur late in the stance phase. Clinical Trial code: NCT05679700Article Citation - WoS: 22Citation - Scopus: 25Effect of Solution Heat Treatment on the Microstructure and Crystallographic Texture of In939 Fabricated by Powder Bed Fusion-Laser Beam(Elsevier, 2023) Dogu, Merve Nur; Ozer, Seren; Yalcin, Mustafa Alp; Davut, Kemal; Bilgin, Guney Mert; Obeidi, Muhannad Ahmed; Brabazon, DermotThe effect of various solution heat treatment temperatures (i.e., 1120, 1160, 1200 and 1240 & DEG;C) on the microstructure, grain morphology and crystallographic texture of IN939 fabricated by powder bed fusion-laser beam (PBF-LB) was investigated. Microstructural analyses showed that the high-temperature gradient and rapid solidification of the PBF-LB processing caused different resulting microstructures compared to conventionally pro-duced counterparts. The melt pool morphologies and laser scanning paths were examined in the as-fabricated samples in the XZ-and XY-planes, respectively. After the application of solution heat treatment at 1120 & DEG;C, the as-fabricated PBF-LB initial microstructure was still apparent. For solution heat treatments of 1200 & DEG;C and above, the melt pool and scanning path morphologies disappeared and converted into a mixture of columnar grains in the XZ-plane and equiaxed grains in the XY-plane. On the other hand, large equiaxed grains were observed when the samples were solutionized at 1240 & DEG;C. Additionally, g' phase precipitated within the matrix after all solution heat treatment conditions, which led to increase in the microhardness values. According to electron backscatter diffraction (EBSD) analyses, both as-fabricated and solution heat-treated samples had intense texture with {001} plane normal parallel to the building direction. The first recrystallized grains began to appear when the samples were subjected to the solution heat treatment at 1160 & DEG;C and the fraction of the recrystallized grains increased with increasing temperature, as supported by kernel average misorientation (KAM) and grain spread orientation (GOS) analyses.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Article Citation - WoS: 2Citation - Scopus: 2An Investigation of Recycled Rubber Composites Reinforced With Micro Glass Bubbles: an Experimental and Numerical Approach(Taylor & Francis Ltd, 2024) Kabakci, Gamze Cakir; Bayraktar, Emin; Aslan, OzgurRecycled rubber is widely used for its lightweight and cost-effective properties but often has limited mechanical strength, restricting its applications. This study enhances the mechanical performance of devulcanised recycled rubber by reinforcing it with micro glass bubbles (GBs) featuring a density of 0.65 g/cm(3) and an elastic modulus of 3.5 GPa, offering a high strength-to-density ratio. Uniaxial compression tests were conducted on samples with GB volume fractions of 5%, 10%, and 15%. Results were validated through finite element analysis (FEA) in ABAQUS/Standard, incorporating randomised GB distributions. A 2D representative volume element (RVE) with randomly distributed GBs was modelled, applying periodic boundary conditions to simplify the composite into an equivalent homogeneous material. Numerical simulations assessed the effects of GB diameters (30, 40, and 50 mu m) and inclusion size ranges (20-50 mu m and 10-60 mu m), finding minimal impact on results. The RVE, sized at 238 mu m, accurately represented macroscale composite behaviour. Stress-strain behaviour was analysed using average stress and strain tensors. The strong agreement between experimental and numerical results validates the proposed method, demonstrating its accuracy in predicting the mechanical behaviour of the reinforced composite material.Article Citation - WoS: 14Citation - Scopus: 14On Relations Between Transportation Cost Spaces and l1<(Academic Press inc Elsevier Science, 2020) Ostrovska, Sofiya; Ostrovskii, Mikhail I.The present paper deals with some structural properties of transportation cost spaces, also known as Arens-Eells spaces, Lipschitz-free spaces and Wasserstein spaces. The main results of this work are: (1) A necessary and sufficient condition on an infinite metric space M, under which the transportation cost space on M contains an isometric copy of l(1). The obtained condition is applied to answer the open questions asked by Cuth and Johanis (2017) concerning several specific metric spaces. (2) The description of the transportation cost space of a weighted finite graph G as the quotient l(1) (E(G))/Z(G), where E(G) is the edge set and Z(G) is the cycle space of G. (C) 2020 Elsevier Inc. All rights reserved.Article Citation - WoS: 25Citation - Scopus: 25A Model for the Prediction of Thermal Runaway in Lithium-Ion Batteries(Elsevier, 2024) Azuaje-Berbeci, Bernardo J.; Ertan, H. BulentThe increasing popularity of electric vehicles is driving research into lithium -ion batteries (LIBs). Thermal runaway (TR) in LIBs is a serious concern for the safe operation of these high-energy-density batteries that is yet to be overcome. A reliable model is needed to predict voltage variation, heat generation, temperature rise, and the process leading to TR of a LIB battery under its operating conditions (charging-discharging). Such a model can be used to design battery packs more resilient to thermal runaway or assess how a battery pack would perform under hazardous conditions. Furthermore, it can be used for generating a warning signal if there is a possibility of the battery going towards TR. This paper presents an approach to solving this problem, which is not currently well addressed in the literature. The approach adopted in this paper is based on a numerical analysis of a multilayered electrochemical-thermal model of LIB. Tuning the parameters of a LIB for accurate results from this numerical model is presented, as well as the details of the approach in the paper. Experiments are performed under several LIBs, and their voltage and surface temperature variations are measured under various operating conditions, including thermal runaway. The results of the experiments are compared with the predictions of the numerical simulations. An excellent agreement is observed with the experimental results, proving the accuracy of the proposed approach. This approach can be configured to give results in a few minutes. The paper also discusses how the developed approach can be used to create a TR warning during operating conditions or to change the mode of operation of a LIB before a hazard occurs.Article Citation - WoS: 1Citation - Scopus: 1Growth and Optical Properties of (na0.5bi0.5< (x=0.25) Single Crystal: a Potential Candidate for Optoelectronic Devices(Springer, 2024) Guler, I.; Isik, M.; Gasanly, N.Double tungstates (DT) and double molybdates (DM) have significant importance because of their optoelectronic applications. Regarding the importance of DT and DM, we investigated experimentally structural and optical properties of (Na0.5Bi0.5)(Mo1-xWx)O-4 (x = 0.25) crystal that belongs to the NaBi-DT and DM crystals group. Czochralski method was used to grow the single crystals. The structure of the crystal was identified using X-ray diffraction (XRD) measurements. Two sharp peaks associated with tetragonal crystal structure appeared in the pattern. Vibrational modes of the studied crystal were obtained from the Raman experiments. By the help of the Fourier transform infrared spectrophotometer (FTIR) measurements, infrared transmittance spectrum of the studied compound was recorded. Band gap energy wase found around 3.04 eV using two methods, Tauc and derivative analysis, based on transmission spectrum. Based on the analysis of absorption coefficient, Urbach energy was obtained as 0.22 eV. The revealed structural and optical properties of the crystal indicated that the material may be a candidate for optoelectronic devices in which NaBi(MoO4)(2) and NaBi(WO4)(2) materials are utilized.Review Citation - WoS: 41Citation - Scopus: 57Drawing the Big Picture of Games in Education: a Topic Modeling-Based Review of Past 55 Years(Pergamon-elsevier Science Ltd, 2023) Ekin, Cansu C.; Polat, Elif; Hopcan, SinanThe literature of games in education has a rich and multidisciplinary content. Due to the large number of studies in the field, it is not easy to analyze all relevant studies. There are few studies exploring the big picture of research trends in the field. For this reason, the purpose of this study is to examine longitudinal trends of game-based research in education using text mining tech-niques. 4980 publications were retrieved as an experimental dataset indexed by the SCOPUS database in the period 1968 to mid-2021. The results include descriptive statistics of game-based research, trends of the research topics, and trends in the frequency of each topic over time. They show that the number of studies focusing on the use of games in education has increased, particularly since the 2000s when Internet use accelerated and became widespread. Approxi-mately 70% of all the studies were conducted in the last 10 years. One third of the studies is related to the main topic of game-based learning. It is significant that in the last three decades the topic of serious games has been among the top three trends. Considering usage acceleration of the topics, the highest values belong to game-based learning, serious games and student science games, in that order. The findings of this study are expected to guide the field by providing a better understanding of the trends of games in education and offer a direction for future research.
