Search Results

Now showing 1 - 10 of 57
  • Article
    Citation - WoS: 17
    Citation - Scopus: 24
    Optimization and Energy Analysis of a Novel Geothermal Heat Exchanger for Photovoltaic Panel Cooling
    (Pergamon-elsevier Science Ltd, 2021) Jafari, Rahim; Jafari, Rahim; Jafari, Rahim; Automotive Engineering; Automotive Engineering
    Electrical energy and conversion efficiency of the photovoltaic (PV) solar panels are measured under standard test conditions in some microseconds at the room temperature (25 degrees C). It also is seen that the actual working conditions, on the other hand, with higher ambient temperature and continuous generated heat in the PV cells can lead to reduction in reduce their electricity generation and long-term sustainability. In the current work, the coolant (water + ethylene glycol) circulates between two heat exchangers; the minichannel heat exchanger is bounded to the PV cells and geothermal heat exchanger is buried underground, and it is set to remove the heat from PV cells to the ground. Six control factors of the geothermal cooling system are considered for the purpose of optimization using Taguchi design and main effect analysis. These parameters are pipe length, soil thermal conductivity, coolant flow rate, adjacent coil distance, pipe inner diameter and pipe thickness. The experimental results show that the average net electricity generation of the cooled PV panel is improved 9.8% compared to the PV panel without cooling system. However, with the same geothermal heat exchanger it drops to 6.2% as the cooled panel number is doubled. The simulation results reveal that the optimum configuration of the geothermal cooling system is capable of enhancing the net electricity generation of the twin cooled panels up to 11.6%. The LCOE of the optimized geothermal cooling system was calculated 0.089 euro/kWh versus the reference panel of 0.102 euro/kWh for the case study of 30 kW PV solar plant.
  • Review
    Citation - WoS: 41
    Citation - Scopus: 57
    Drawing the Big Picture of Games in Education: a Topic Modeling-Based Review of Past 55 Years
    (Pergamon-elsevier Science Ltd, 2023) Ekin, Cansu C.; Polat, Elif; Hopcan, Sinan
    The literature of games in education has a rich and multidisciplinary content. Due to the large number of studies in the field, it is not easy to analyze all relevant studies. There are few studies exploring the big picture of research trends in the field. For this reason, the purpose of this study is to examine longitudinal trends of game-based research in education using text mining tech-niques. 4980 publications were retrieved as an experimental dataset indexed by the SCOPUS database in the period 1968 to mid-2021. The results include descriptive statistics of game-based research, trends of the research topics, and trends in the frequency of each topic over time. They show that the number of studies focusing on the use of games in education has increased, particularly since the 2000s when Internet use accelerated and became widespread. Approxi-mately 70% of all the studies were conducted in the last 10 years. One third of the studies is related to the main topic of game-based learning. It is significant that in the last three decades the topic of serious games has been among the top three trends. Considering usage acceleration of the topics, the highest values belong to game-based learning, serious games and student science games, in that order. The findings of this study are expected to guide the field by providing a better understanding of the trends of games in education and offer a direction for future research.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 9
    Expanding the Role of Exosomes in Drug, Biomolecule, and Nanoparticle Delivery
    (Pergamon-elsevier Science Ltd, 2025) Saka, Ongun Mehmet; Dora, Devrim Demir; Kibar, Gunes; Tevlek, Atakan
    Exosomes are nanoscale extracellular vesicles released by diverse cell types, serving essential functions in intercellular communication and physiological processes. These vesicles have garnered considerable interest in recent years for their potential as drug delivery systems, attributed to their natural origin, minimal immunogenicity, high biocompatibility, and capacity to traverse biological barriers, including the blood-brain barrier. Exosomes can be obtained from diverse biological fluids, rendering them accessible and versatile vehicles for therapeutic medicines. This study emphasizes the burgeoning significance of exosomes in drug administration, concentrating on their benefits, including improved stability, target selectivity, and the capacity to encapsulate various biomolecules, such as proteins, nucleic acids, and small molecules. Notwithstanding their potential applications, other problems remain, including as effective drug loading, industrial scalability, and the standardization of isolation methodologies. Overcoming these hurdles via new research is essential for fully harnessing the promise of exosomes in therapeutic applications, especially in the treatment of intricate diseases like cancer and neurological disorders.
  • Article
    Citation - WoS: 6
    Citation - Scopus: 7
    Fabrication and Performance Evaluation of Graphene-Supported Ptru Electrocatalyst for High-Temperature Electrochemical Hydrogen Purification
    (Pergamon-elsevier Science Ltd, 2023) Bal, Ilay Bilge; Durmus, Gizem Nur Bulanik; Devrim, Yilser
    The main aim of this study is to investigate the high-temperature electrochemical hydrogen purification (HT-ECHP) performances of graphene nanoplatelet (GNP) support material decorated with platinum (Pt) and platinum-ruthenium (PtRu) nanoparticles prepared by microwave irradiation technique. Prepared catalysts coupled to the phosphoric acid doped polybenzimidazole (PBI) membrane for HT-ECHP application. The structural and electrochemical properties of the catalysts were examined by thermogravimetric analysis (TGA), X-Ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transition electron microscopy (TEM) and cyclic voltammetry (CV) analyses. The characterization results indicate that the catalysts provided the necessary properties for HT-ECHP application. The HT-ECHP performances are investigated with reformate gas mixture containing hydrogen (H2), carbon dioxide (CO2) and carbon monoxide (CO) in the range of 140-180 & DEG;C. The results show that the electrochemical purification performances of the catalysts increase with increasing operating temperature. The highest H2 purification performance is obtained with PtRu/GNP catalyst. The high electrochemical H2 purification performance of the PtRu/GNP catalyst can be attributed to the strong synergistic interactions between Pt and Ru particles decorated on the GNP. These results advocate that the PtRu/GNP catalyst is a hopeful catalyst for HT-ECHP application. & COPY; 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 8
    Experimental and Modeling Studies of a High-Temperature Electrochemical Hydrogen Compressor
    (Pergamon-elsevier Science Ltd, 2024) Durmus, Gizem Nur Bulanik; Kuzu, Cemil; Devrim, Yilser; Colpan, C. Ozgur
    Some non-technical factors such as economics and logistics prevent hydrogen (H2) tech-nologies from becoming more widespread in daily life. Today, the prevalence of H2 tech-nologies requires new technological developments. Electrochemical hydrogen compressors (ECHC) are of great interest due to their ability to pressurize and purify in one step. In this study, the electrochemical H2 compression performance of high phosphoric acid (PA) doped poly 2,2-m-phenylene-5,5-benzimidazole (PBI) membrane-based HT-ECHC under high temperature and non-humid conditions was investigated through both an experimental and a numerical approach. The H2 compression capacity of HT-ECHC at different operating voltages was examined by performance tests at 160 degrees C, and it was determined that the electrochemical compression performance increased with increasing operating voltage. It was observed that the current density values also increased with increasing voltage, and it was determined that a current density of 61.2 A was obtained at 1 V. As a result of the tests, H2 was successfully compressed from atmospheric pressure to 60 bar by HT-ECHC without any gas leakage. The results of the developed model were compared with the experimental performance test data, and the variation of molar flow, cell voltage, and cell efficiency over time was examined. It has been determined that the back diffusion from the cathode to the anode in the cell increases with the increasing operating voltage of HT-ECHC and therefore the cell efficiency decreases. It has been evaluated that the developed model and experimental results are in good agreement. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 17
    Effect of hydrogen on fracture locus of Fe-16Mn-0.6C-2.15Al TWIP steel
    (Pergamon-elsevier Science Ltd, 2020) Bal, Burak; Cetin, Baris; Bayram, Ferdi Caner; Billur, Eren
    Effect of hydrogen on the mechanical response and fracture locus of commercial TWIP steel was investigated comprehensively by tensile testing TWIP steel samples at room temperature and quasi-static regime. 5 different sample geometries were utilized to ensure different specific stress states and a digital image correlation (DIC) system was used during tensile tests. Electrochemical charging method was utilized for hydrogen charging and microstructural characterizations were carried out by scanning electron microscope. Stress triaxiality factors were calculated throughout the plastic deformation via finite element analysis (FEA) based simulations and average values were calculated at the most critical node. A specific Python script was developed to determine the equivalent fracture strain. Based on the experimental and numerical results, the relation between the equivalent fracture strain and stress triaxiality was determined and the effect of hydrogen on the corresponding fracture locus was quantified. The deterioration in the mechanical response due to hydrogen was observed regardless of the sample geometry and hydrogen changed the fracture mode from ductile to brittle. Moreover, hydrogen affected the fracture locus of TWIP steel by lowering the equivalent failure strains at given stress triaxiality levels. In this study, a modified Johnson-Cook failure mode was proposed and effect of hydrogen on damage constants were quantified. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 24
    Citation - Scopus: 24
    Identifying the Potentials for Charge Transport Layers Free N-P Homojunction-Based Perovskite Solar Cells
    (Pergamon-elsevier Science Ltd, 2022) Khan, Danish; Sajid, Sajid; Khan, Suliman; Park, Jongee; Ullah, Ihsan
    Perovskite solar cells (PSCs) with no charge transport layers (CTLs) could be one of the major device architectures for the production of simple and low-cost devices. However, CTLs-free PSCs based on n-p homojunction have yet to show high power conversion efficiency (PCE), which is most likely due to inadequate light-and charge-management in the p-type perovskite. The device operation is examined using Solar Cell Capacitance Simulator (SCAPS)-software, and a novel n-p homojunction design is proposed to attempt efficient CTLs-free PSCs. Several aspects of p-type layer that can affect device performance, such as acceptor density, photon harvesting capability, defects density, and resistances to the transport of charge-carriers are scrutinized and adjusted. Furthermore, the effects of different work-functions of metal electrodes are examined. A suitable acceptor concentration is required for oriented charge transport. It is determined that a p-type perovskite with a thickness of 0.3 mu m is advantageous for high performance. A metal electrode with a high work-function is essential for efficient device. Consequently, a PCE of 15.60% is obtained with an optimal defect density of E15 cm(-3), indicating that n-p homojunction-based CTLs-free PSCs are promising since they simplify the device design and fabrication process while retaining an acceptable PCE.
  • Article
    Citation - WoS: 68
    Citation - Scopus: 69
    Composite Membrane by Incorporating Sulfonated Graphene Oxide in Polybenzimidazole for High Temperature Proton Exchange Membrane Fuel Cells
    (Pergamon-elsevier Science Ltd, 2022) Devrim, Yilser; Durmus, Gizem Nur Bulanik
    The objective of this work is to examine the polybenzimidazole (PBI)/sulfonated graphene oxide (sGO) membranes as alternative materials for high-temperature proton exchange membrane fuel cell (HT-PEMFC). PBI/sGO composite membranes were characterized by TGA, FTIR, SEM analysis, acid doping&acid leaching tests, mechanical analysis, and proton conductivity measurements. The proton conductivity of composite membranes was considerably enhanced by the existence of sGO filler. The enhancement of these properties is related to the increased content of -SO3H groups in the PBI/sGO composite membrane, increasing the channel availability required for the proton transport. The PBI/sGO membranes were tested in a single HT-PEMFC to evaluate high-temperature fuel cell performance. Amongst the PBI/sGO composite membranes, the membrane containing 5 wt. % GO (PBI/sGO-2) showed the highest HT-PEMFC performance. The maximum power density of 364 mW/cm(2) was yielded by PBI/sGO-2 membrane when operating the cell at 160 degrees C under non humidified conditions. In comparison, a maximum power density of 235 mW/cm(2) was determined by the PBI membrane under the same operating conditions. To investigate the HT-PEMFC stability, long-term stability tests were performed in comparison with the PBI membrane. After a long-term performance test for 200 h, the HT-PEMFC performance loss was obtained as 9% and 13% for PBI/sGO-2 and PBI membranes, respectively. The improved HT-PEMFC performance of PBI/sGO composite membranes suggests that PBI/sGO composites are feasible candidates for HT-PEMFC applications. (C) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Article
    Citation - WoS: 14
    Citation - Scopus: 14
    The Number of Failed Components in Series-Parallel System and Its Application To Optimal Design
    (Pergamon-elsevier Science Ltd, 2020) Eryilmaz, Serkan; Ozkurt, Fatma Yerlikaya; Erkan, T. Erman
    The number of components that are failed at the time of system failure is a useful quantity since it gives an idea of how many spares should be available to replace all failed components upon the system failure. In this paper, the number of failed components is considered at subsystem and system levels for the series-parallel system that consists of K subsystems. In particular, the joint behavior of the number of failed components in each subsystem is studied when each subsystem has identical components and different subsystems have different types of components. The results are then used to find the optimal number of components in each subsystem by minimizing an expected cost per unit of time upon the system failure.
  • Review
    Citation - WoS: 119
    Citation - Scopus: 141
    Dynamic Thermal and Hygrometric Simulation of Historical Buildings: Critical Factors and Possible Solutions
    (Pergamon-elsevier Science Ltd, 2020) Akkurt, G. G.; Aste, N.; Borderon, J.; Buda, A.; Calzolari, M.; Chung, D.; Turhan, C.
    Building dynamic simulation tools, traditionally used to study the hygrothermal performance of new buildings during the preliminary design steps, have been recently adopted also in historical buildings, as a tool to investigate possible strategies for their conservation and the suitability of energy retrofit scenarios, according to the boundary conditions. However, designers often face with the lack of reliable thermophysical input data for various envelope components as well as with some intrinsic limitations in the simulation models, especially to describe the geometric features and peculiarities of the heritage buildings. This paper attempts to bridge this knowledge gap, providing critical factors and possible solutions to support hygrothermal simulations of historical buildings. The information collected in the present work could be used by researchers, specialists and policy-makers involved in the conservation of building's heritage, who need to address a detailed study of the hygrothermal performance of historical buildings thorugh dynamic simulation tools.